Weakly U-abundant semigroups

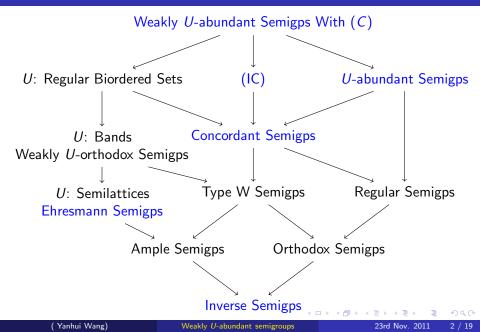
Yanhui Wang

The University of York, UK

23rd Nov. 2011

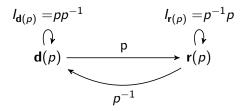
NBSAN

Outline: U a biordered set



Definition A groupoid is a category G in which for every $p \in MorG$ we have $p^{-1} \in MorG$ with

$$pp^{-1} = I_{d(p)}$$
 and $p^{-1}p = I_{r(p)}$.



Let S be an inverse semigroup with semilattice of idempotents E. We construct a groupoid C(S) as follows:

Ob
$$C(S) = E$$
, Mor $C(S) = S$, $d(x) = xx'$, $r(x) = x'x$

and a partial binary operation \cdot is defined by the rule that for any $x, y \in S$,

$$x \cdot y = \begin{cases} xy & \text{if } \mathbf{r}(x) = \mathbf{d}(y), \\ \text{undefined}, & \text{otherwise.} \end{cases}$$

where xy is the product of x and y in S.

Let $G = (G, \cdot)$ be a small groupoid. Let S be the semigroup obtained from G by declaring all undefined products to be 0.

Fact 1. $S = G \cup \{0\}$ is an inverse semigroup with 0 with $E(S) = E(G) \cup \{0\}$.

Let $G = (G, \cdot)$ be a small groupoid. Let S be the semigroup obtained from G by declaring all undefined products to be 0.

Fact 1. $S = G \cup \{0\}$ is an inverse semigroup with 0 with $E(S) = E(G) \cup \{0\}$.

- $x \le y$ implies that $x^{-1} \le y^{-1}$;
- **2** $x \le y, u \le v, \exists x \cdot u, \exists y \cdot v \text{ implies that } x \cdot u \le y \cdot v;$
- if a ∈ G and e ∈ E with e ≤ d(a), then there exists a unique restriction (e|a) ∈ G with d(e|a) = e and (e|a) ≤ a;
- if a ∈ G and e ∈ E with e ≤ r(a), then there exists a unique co-restriction (a|e) ∈ G with r(a|e) = e and (a|e) ≤ a; then G = (G, ·, ≤) is called an ordered groupoid. If in addition
- *E* is a semilattice.

•
$$x \le y$$
 implies that $x^{-1} \le y^{-1}$;

 $x \leq y, u \leq v, \exists x \cdot u, \exists y \cdot v \text{ implies that } x \cdot u \leq y \cdot v;$

- ③ if $a \in G$ and $e \in E$ with $e \le \mathbf{d}(a)$, then there exists a unique restriction $(e|a) \in G$ with $\mathbf{d}(e|a) = e$ and $(e|a) \le a$;
- if a ∈ G and e ∈ E with e ≤ r(a), then there exists a unique co-restriction (a|e) ∈ G with r(a|e) = e and (a|e) ≤ a; then G = (G, ·, ≤) is called an ordered groupoid. If in addition
 E is a semilattice.

•
$$x \le y$$
 implies that $x^{-1} \le y^{-1}$;

 $x \leq y, u \leq v, \exists x \cdot u, \exists y \cdot v \text{ implies that } x \cdot u \leq y \cdot v;$

- ③ if $a \in G$ and $e \in E$ with $e \le \mathbf{d}(a)$, then there exists a unique **restriction** $(e|a) \in G$ with $\mathbf{d}(e|a) = e$ and $(e|a) \le a$;
- if a ∈ G and e ∈ E with e ≤ r(a), then there exists a unique co-restriction (a|e) ∈ G with r(a|e) = e and (a|e) ≤ a; then G = (G, ·, ≤) is called an ordered groupoid. If in addition
- E is a semilattice.

•
$$x \le y$$
 implies that $x^{-1} \le y^{-1}$;

 $x \leq y, u \leq v, \exists x \cdot u, \exists y \cdot v \text{ implies that } x \cdot u \leq y \cdot v;$

- ③ if $a \in G$ and $e \in E$ with $e \le \mathbf{d}(a)$, then there exists a unique restriction $(e|a) \in G$ with $\mathbf{d}(e|a) = e$ and $(e|a) \le a$;
- if a ∈ G and e ∈ E with e ≤ r(a), then there exists a unique co-restriction (a|e) ∈ G with r(a|e) = e and (a|e) ≤ a; then G = (G, ·, ≤) is called an ordered groupoid. If in addition
 E is a semilattice.

Let S be an inverse semigroup with semilattice of idempotents E. Let $C(S) = (S, \cdot)$ be defined as above.

Partial Order: For any $a, b \in S$, $a \leq b \Leftrightarrow a = eb$ for some $e \in E$

Fact 2. $C(S) = (S, \cdot, \leq)$ is an inductive groupoid with

(e|a) = ea, (a|e) = ae.

Let S be an inverse semigroup with semilattice of idempotents E. Let $C(S) = (S, \cdot)$ be defined as above.

Partial Order: For any $a, b \in S$, $a \leq b \Leftrightarrow a = eb$ for some $e \in E$

Fact 2. $C(S) = (S, \cdot, \leq)$ is an inductive groupoid with

(e|a) = ea, (a|e) = ae.

Let S be an inverse semigroup with semilattice of idempotents E. Let $C(S) = (S, \cdot)$ be defined as above.

Partial Order: For any $a, b \in S$, $a \leq b \Leftrightarrow a = eb$ for some $e \in E$

Fact 2. $C(S) = (S, \cdot, \leq)$ is an inductive groupoid with

 $(e|a) = ea, \ (a|e) = ae.$

Let $G = (G, \cdot, \leq)$ be an inductive groupoid. We define a *pseudo-product* \otimes on G by the rule that

 $a\otimes b=(a|\mathbf{r}(a)\wedge \mathbf{d}(b))\cdot (\mathbf{r}(a)\wedge \mathbf{d}(b)|b).$

Fact 3. $S(G) = (G, \otimes)$ is an inverse semigroup (having the same partial order as G).

Ehresmann-Schein-Nambooripad

The category I of inverse semigroups and morphisms is isomorphic to the category ${\bf G}$ of inductive groupoids and inductive functors.

Let $G = (G, \cdot, \leq)$ be an inductive groupoid. We define a *pseudo-product* \otimes on G by the rule that

$$a\otimes b=(a|\mathbf{r}(a)\wedge \mathbf{d}(b))\cdot (\mathbf{r}(a)\wedge \mathbf{d}(b)|b).$$

Fact 3. $S(G) = (G, \otimes)$ is an inverse semigroup (having the same partial order as G).

Ehresmann-Schein-Nambooripad

The category I of inverse semigroups and morphisms is isomorphic to the category ${\bf G}$ of inductive groupoids and inductive functors.

Let $G = (G, \cdot, \leq)$ be an inductive groupoid. We define a *pseudo-product* \otimes on G by the rule that

$$a \otimes b = (a | \mathbf{r}(a) \wedge \mathbf{d}(b)) \cdot (\mathbf{r}(a) \wedge \mathbf{d}(b) | b).$$

Fact 3. $S(G) = (G, \otimes)$ is an inverse semigroup (having the same partial order as G).

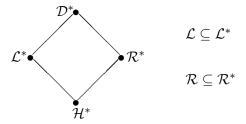
Ehresmann-Schein-Nambooripad

The category ${\bf I}$ of inverse semigroups and morphisms is isomorphic to the category ${\bf G}$ of inductive groupoids and inductive functors.

Green's star equivalences

Definition

• Given a semigroup S, for any $a, b \in S$, $a \mathcal{L}^* b$ if $a \mathcal{L} b$ in a semigroup T such that $S \subseteq T$. Dually, The relation \mathcal{R}^* on S is defined. $\mathcal{D}^* = \mathcal{L}^* \lor \mathcal{R}^*$. $\mathcal{H}^* = \mathcal{L}^* \land \mathcal{R}^*$.

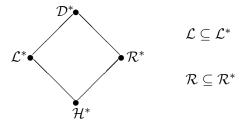


• A semigroup is called *U*-abundant if each *L**-class and each *R**-class contains an idempotent.

Green's star equivalences

Definition

• Given a semigroup S, for any $a, b \in S$, $a \mathcal{L}^* b$ if $a \mathcal{L} b$ in a semigroup T such that $S \subseteq T$. Dually, The relation \mathcal{R}^* on S is defined. $\mathcal{D}^* = \mathcal{L}^* \lor \mathcal{R}^*$. $\mathcal{H}^* = \mathcal{L}^* \land \mathcal{R}^*$.



• A semigroup is called *U*-abundant if each *L**-class and each *R**-class contains an idempotent.

(Yanhui Wang)

Then S is idempotent-connected (*IC*) if for any $a \in S$ and for some a^{\dagger} , a^* , there exists a bijection $\alpha : \langle a^{\dagger} \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^{\dagger} \rangle$, where for any $e \in U$, $\langle e \rangle$ is the subsemigroup generated by idempotents of eUe.

An abundant semigroup S is called a **concordant semigroup** if S satisfies Condition (*IC*) and its set of idempotents generates a regular subsemigroup.

Then S is idempotent-connected (*IC*) if for any $a \in S$ and for some a^{\dagger} , a^* , there exists a bijection $\alpha : \langle a^{\dagger} \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^{\dagger} \rangle$, where for any $e \in U$, $\langle e \rangle$ is the subsemigroup generated by idempotents of eUe.

An abundant semigroup S is called a **concordant semigroup** if S satisfies Condition (*IC*) and its set of idempotents generates a regular subsemigroup.

Then S is idempotent-connected (*IC*) if for any $a \in S$ and for some a^{\dagger} , a^* , there exists a bijection $\alpha : \langle a^{\dagger} \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^{\dagger} \rangle$, where for any $e \in U$, $\langle e \rangle$ is the subsemigroup generated by idempotents of *eUe*.

An abundant semigroup *S* is called a **concordant semigroup** if *S* satisfies Condition (*IC*) and its set of idempotents generates a regular subsemigroup.

Then S is idempotent-connected (*IC*) if for any $a \in S$ and for some a^{\dagger} , a^* , there exists a bijection $\alpha : \langle a^{\dagger} \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^{\dagger} \rangle$, where for any $e \in U$, $\langle e \rangle$ is the subsemigroup generated by idempotents of *eUe*.

An abundant semigroup S is called a **concordant semigroup** if S satisfies Condition (IC) and its set of idempotents generates a regular subsemigroup.

Let S be a concordant semigroup with set of idempotents U. Set

$$\mathbf{K}(S) = \{(e, a, f) : f \in L_a^* \cap U, e \in R_a^* \cap U\}.$$

We define a partial binary operation on K(S) by

$$(e, a, f) \cdot (g, b, h) = \begin{cases} (e, ab, h) & \text{if } f = g \\ \text{undefined} & \text{otherwise.} \end{cases}$$

Partial Order:

 $(e, a, f) \leq (g, b, h) \Leftrightarrow e \ \omega \ g, a = eb \text{ and } f = e\beta$, where $\beta : \langle e \rangle \rightarrow \langle f \rangle$. Fact 4: The set $(\mathbf{K}(S), \cdot, \leq)$ forms an inductive cancellative category. Let S be a concordant semigroup with set of idempotents U. Set

$$\mathbf{K}(S) = \{(e, a, f) : f \in L_a^* \cap U, e \in R_a^* \cap U\}.$$

We define a partial binary operation on K(S) by

$$(e, a, f) \cdot (g, b, h) = \begin{cases} (e, ab, h) & \text{if } f = g \\ \text{undefined} & \text{otherwise.} \end{cases}$$

Partial Order: $(e, a, f) \leq (g, b, h) \Leftrightarrow e \ \omega \ g, a = eb \text{ and } f = e\beta$, where $\beta : \langle e \rangle \rightarrow \langle f \rangle$. Fact 4: The set $(\mathbf{K}(S), \cdot, \leq)$ forms an inductive cancellative category. Let S be a concordant semigroup with set of idempotents U. Set

$$\mathbf{K}(S) = \{(e, a, f) : f \in L_a^* \cap U, e \in R_a^* \cap U\}.$$

We define a partial binary operation on K(S) by

$$(e, a, f) \cdot (g, b, h) = \begin{cases} (e, ab, h) & \text{if } f = g \\ undefined & \text{otherwise.} \end{cases}$$

Partial Order:

 $(e, a, f) \leq (g, b, h) \Leftrightarrow e \ \omega \ g, a = eb \text{ and } f = e\beta$, where $\beta : \langle e \rangle \rightarrow \langle f \rangle$. Fact 4: The set $(\mathbf{K}(S), \cdot, \leq)$ forms an inductive cancellative category. Let (C, \cdot, \leq) be an inductive cancellative category with regular biordered set of objects E and ρ be a congruence on (C, \cdot, \leq) .

For any $x \in C$, \bar{x} denotes the ρ -class containing x. Define

$$\bar{x}\circ\bar{y}=\overline{(x\otimes y)_h},$$

where $h \in S(\mathbf{r}(x), \mathbf{d}(y))$.

Fact 5: The set $(C/\rho, \circ)$ forms a concordant semigroup.

Theorem: The category of inductive cancellative categories is equivalent to the category of concordant semigroups. (S. Armstrong, 1988)

Let (C, \cdot, \leq) be an inductive cancellative category with regular biordered set of objects E and ρ be a congruence on (C, \cdot, \leq) .

For any $x \in C$, \bar{x} denotes the ρ -class containing x. Define

$$\bar{x}\circ\bar{y}=\overline{(x\otimes y)_h},$$

where $h \in S(\mathbf{r}(x), \mathbf{d}(y))$.

Fact 5: The set $(C/\rho, \circ)$ forms a concordant semigroup.

Theorem: The category of inductive cancellative categories is equivalent to the category of concordant semigroups. (S. Armstrong, 1988)

Let (C, \cdot, \leq) be an inductive cancellative category with regular biordered set of objects E and ρ be a congruence on (C, \cdot, \leq) .

For any $x \in C$, \bar{x} denotes the ρ -class containing x. Define

$$\bar{x}\circ\bar{y}=\overline{(x\otimes y)_h},$$

where $h \in S(\mathbf{r}(x), \mathbf{d}(y))$.

Fact 5: The set $(C/\rho, \circ)$ forms a concordant semigroup.

Theorem: The category of inductive cancellative categories is equivalent to the category of concordant semigroups. (S. Armstrong, 1988)

Definition

Let U ⊆ E(S). For any a, b ∈ S,
a L̃_U b ⇔ (∀e ∈ U)(ae = a if and only if be = b),
a R̃_U b ⇔ (∀e ∈ U)(ea = a if and only if eb = b),
H̃_U = L̃_U ∧ R̃_U, D̃_U = L̃_U ∨ R̃_U.

- A semigroup S with $U \subseteq E(S)$ is said to be weakly U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U.
- A weakly U-abundant semigroup S satisfies Congruence Condition
 (C) if *L U* is a right congruence and *R U* is a left congruence.
- A weakly *E*-abundant semigroup (*S*) is an **Ehresmann semigroup** if *S* satisfies (*C*) and *E* is a semilattice.
- A weakly U-concordant semigroup is a weakly U-abundant semigroup with (C) and (U) being a regular semigroup whose set of idempotents is U.

Definition

• Let $U \subseteq E(S)$. For any $a, b \in S$, $a \widetilde{\mathcal{L}}_U b \Leftrightarrow (\forall e \in U) (ae = a \text{ if and only if } be = b)$, $a \widetilde{\mathcal{R}}_U b \Leftrightarrow (\forall e \in U) (ea = a \text{ if and only if } eb = b)$, $\widetilde{\mathcal{H}}_U = \widetilde{\mathcal{L}}_U \land \widetilde{\mathcal{R}}_U$, $\widetilde{\mathcal{D}}_U = \widetilde{\mathcal{L}}_U \lor \widetilde{\mathcal{R}}_U$.

- A semigroup S with $U \subseteq E(S)$ is said to be weakly U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U.
- A weakly U-abundant semigroup S satisfies Congruence Condition
 (C) if *L U* is a right congruence and *R U* is a left congruence.
- A weakly *E*-abundant semigroup (*S*) is an **Ehresmann semigroup** if *S* satisfies (*C*) and *E* is a semilattice.
- A weakly U-concordant semigroup is a weakly U-abundant semigroup with (C) and (U) being a regular semigroup whose set of idempotents is U.

▲ □ ► ▲ □ ►

Definition

• Let
$$U \subseteq E(S)$$
. For any $a, b \in S$,
 $a \widetilde{\mathcal{L}}_U b \Leftrightarrow (\forall e \in U) (ae = a \text{ if and only if } be = b)$,
 $a \widetilde{\mathcal{R}}_U b \Leftrightarrow (\forall e \in U) (ea = a \text{ if and only if } eb = b)$,
 $\widetilde{\mathcal{H}}_U = \widetilde{\mathcal{L}}_U \land \widetilde{\mathcal{R}}_U$, $\widetilde{\mathcal{D}}_U = \widetilde{\mathcal{L}}_U \lor \widetilde{\mathcal{R}}_U$.

- A semigroup S with $U \subseteq E(S)$ is said to be weakly U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U.
- A weakly U-abundant semigroup S satisfies Congruence Condition
 (C) if *L*_U is a right congruence and *R*_U is a left congruence.
- A weakly *E*-abundant semigroup (*S*) is an **Ehresmann semigroup** if *S* satisfies (*C*) and *E* is a semilattice.
- A weakly U-concordant semigroup is a weakly U-abundant semigroup with (C) and (U) being a regular semigroup whose set of idempotents is U.

Definition

• Let
$$U \subseteq E(S)$$
. For any $a, b \in S$,
 $a \widetilde{\mathcal{L}}_U b \Leftrightarrow (\forall e \in U) (ae = a \text{ if and only if } be = b)$,
 $a \widetilde{\mathcal{R}}_U b \Leftrightarrow (\forall e \in U) (ea = a \text{ if and only if } eb = b)$,
 $\widetilde{\mathcal{H}}_U = \widetilde{\mathcal{L}}_U \land \widetilde{\mathcal{R}}_U$, $\widetilde{\mathcal{D}}_U = \widetilde{\mathcal{L}}_U \lor \widetilde{\mathcal{R}}_U$.

- A semigroup S with $U \subseteq E(S)$ is said to be weakly U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U.
- A weakly U-abundant semigroup S satisfies Congruence Condition
 (C) if *L*_U is a right congruence and *R*_U is a left congruence.
- A weakly *E*-abundant semigroup (*S*) is an **Ehresmann semigroup** if *S* satisfies (*C*) and *E* is a semilattice.
- A weakly U-concordant semigroup is a weakly U-abundant semigroup with (C) and (U) being a regular semigroup whose set of idempotents is U.

Definition

• Let
$$U \subseteq E(S)$$
. For any $a, b \in S$,
 $a \widetilde{\mathcal{L}}_U b \Leftrightarrow (\forall e \in U) (ae = a \text{ if and only if } be = b)$,
 $a \widetilde{\mathcal{R}}_U b \Leftrightarrow (\forall e \in U) (ea = a \text{ if and only if } eb = b)$,
 $\widetilde{\mathcal{H}}_U = \widetilde{\mathcal{L}}_U \land \widetilde{\mathcal{R}}_U$, $\widetilde{\mathcal{D}}_U = \widetilde{\mathcal{L}}_U \lor \widetilde{\mathcal{R}}_U$.

- A semigroup S with $U \subseteq E(S)$ is said to be weakly U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U.
- A weakly U-abundant semigroup S satisfies Congruence Condition
 (C) if *L*_U is a right congruence and *R*_U is a left congruence.
- A weakly *E*-abundant semigroup (*S*) is an **Ehresmann semigroup** if *S* satisfies (*C*) and *E* is a semilattice.
- A weakly U-concordant semigroup is a weakly U-abundant semigroup with (C) and (U) being a regular semigroup whose set of idempotents is U.

Let S be an Ehresmann semigroup with distinguished semilattice of idempotents E.

$$C(S) = (S, \cdot)$$

where, \cdot is defined by the rule that for any $x, y \in S$,

$$x \cdot y = \left\{egin{array}{cc} xy & ext{if} \ x^* = y^\dagger \\ ext{undefined} & ext{otherwise.} \end{array}
ight.$$

where xy is the product of x and y in S.

Partial orders $x \leq_r y \Leftrightarrow x = x^{\dagger}y$; $x \leq_I y \Leftrightarrow x = yx^*$ Fact 6: The set $(C(S), \cdot, \leq_r, \leq_I)$ forms an Ehresmann category Let S be an Ehresmann semigroup with distinguished semilattice of idempotents E.

$$C(S) = (S, \cdot)$$

where, \cdot is defined by the rule that for any $x, y \in S$,

$$x \cdot y = \left\{egin{array}{cc} xy & ext{if} \ x^* = y^\dagger \\ ext{undefined} & ext{otherwise.} \end{array}
ight.$$

where xy is the product of x and y in S.

Partial orders $x \leq_r y \Leftrightarrow x = x^{\dagger}y$; $x \leq_I y \Leftrightarrow x = yx^*$

Fact 6: The set $(C(S), \cdot, \leq_r, \leq_l)$ forms an Ehresmann category.

Let S be an Ehresmann semigroup with distinguished semilattice of idempotents E.

$$C(S) = (S, \cdot)$$

where, \cdot is defined by the rule that for any $x, y \in S$,

$$x \cdot y = \left\{egin{array}{cc} xy & ext{if} \ x^* = y^\dagger \\ ext{undefined} & ext{otherwise.} \end{array}
ight.$$

where xy is the product of x and y in S.

Partial orders $x \leq_r y \Leftrightarrow x = x^{\dagger}y$; $x \leq_l y \Leftrightarrow x = yx^*$

Fact 6: The set $(C(S), \cdot, \leq_r, \leq_l)$ forms an Ehresmann category.

Let $(C, \cdot, \leq_r, \leq_l)$ be an Ehresmann category. We define a *pseudo-product* \otimes on C by the rule that

$$a\otimes b=(a|\mathbf{r}(a)\wedge \mathbf{d}(b))\cdot (\mathbf{r}(a)\wedge \mathbf{d}(b)|b).$$

Fact 7: The set (C, \otimes) is an Ehresmann semigroup.

Theorem: The category of Ehresmann semigroups and admissible homomorphisms is isomorphic to the category of Ehresmann categories and strongly ordered functors. (M.V.Lawson, 1989)

Let $(C, \cdot, \leq_r, \leq_l)$ be an Ehresmann category. We define a *pseudo-product* \otimes on C by the rule that

$$a\otimes b=(a|\mathbf{r}(a)\wedge \mathbf{d}(b))\cdot (\mathbf{r}(a)\wedge \mathbf{d}(b)|b).$$

Fact 7: The set (C, \otimes) is an Ehresmann semigroup.

Theorem: The category of Ehresmann semigroups and admissible homomorphisms is isomorphic to the category of Ehresmann categories and strongly ordered functors. (M.V.Lawson, 1989) Let $(C, \cdot, \leq_r, \leq_l)$ be an Ehresmann category. We define a *pseudo-product* \otimes on C by the rule that

$$a\otimes b=(a|\mathbf{r}(a)\wedge \mathbf{d}(b))\cdot (\mathbf{r}(a)\wedge \mathbf{d}(b)|b).$$

Fact 7: The set (C, \otimes) is an Ehresmann semigroup.

Theorem: The category of Ehresmann semigroups and admissible homomorphisms is isomorphic to the category of Ehresmann categories and strongly ordered functors. (M.V.Lawson, 1989)

- if $e \mathcal{R} f$ or $e \mathcal{L} f$, then $\exists [e, f]$ in Hom(e, f) s.t. $[e, e] = 1_e$;
- (2) if $x \in C$, $h \in E$ and $h \omega^{l} \mathbf{d}_{x}$, then there exists a **restriction** h|x such that $\mathbf{d}_{h|x} = h$ and $\mathbf{r}_{h|x} \omega^{l} \mathbf{r}_{x}$, in particular, $\mathbf{r}_{\mathbf{d}_{x}|x} \mathcal{L} \mathbf{r}_{x}$ and $x \cdot [\mathbf{r}_{x}, \mathbf{r}_{\mathbf{d}_{x}|x}] = \mathbf{d}_{x}|x;$
- if $e \mathcal{R} f \mathcal{R} g$ or $e \mathcal{L} f \mathcal{L} g$, then $[e, f] \cdot [f, g] = [e, g]$;
- If $g \ \omega \ e$ and $e \ \mathcal{R} f$ or $e \ \mathcal{L} f$, then $g|[e, f] = [g, gf] \cdot [gf, (gf)^*];$
- (a) if $e \omega^{l} f \omega^{l} \mathbf{d}_{x}$, then e|(f|x) = e|x;
- **o** if $h \omega^l \mathbf{d}_x$ and $\exists x \cdot y$, then $h|(x \cdot y) = (h|x) \cdot (g|y)$, where $g = \mathbf{r}_{h|x}$. Then *C* is a **proper category**.

- If $e \mathcal{R} f$ or $e \mathcal{L} f$, then $\exists [e, f]$ in Hom(e, f) s.t. $[e, e] = 1_e$;
- (2) if $x \in C$, $h \in E$ and $h \omega^{l} \mathbf{d}_{x}$, then there exists a **restriction** h|x such that $\mathbf{d}_{h|x} = h$ and $\mathbf{r}_{h|x} \omega^{l} \mathbf{r}_{x}$, in particular, $\mathbf{r}_{\mathbf{d}_{x}|x} \mathcal{L} \mathbf{r}_{x}$ and $x \cdot [\mathbf{r}_{x}, \mathbf{r}_{\mathbf{d}_{x}|x}] = \mathbf{d}_{x}|x;$
- if $e \mathcal{R} f \mathcal{R} g$ or $e \mathcal{L} f \mathcal{L} g$, then $[e, f] \cdot [f, g] = [e, g]$;
- if $g \ \omega \ e$ and $e \ \mathcal{R} f$ or $e \ \mathcal{L} f$, then $g|[e, f] = [g, gf] \cdot [gf, (gf)^*];$
- **(a)** if $e \omega^{l} f \omega^{l} \mathbf{d}_{x}$, then e|(f|x) = e|x;
- **o** if $h \omega^l \mathbf{d}_x$ and $\exists x \cdot y$, then $h|(x \cdot y) = (h|x) \cdot (g|y)$, where $g = \mathbf{r}_{h|x}$. Then *C* is a **proper category**.

- if $e \mathcal{R} f$ or $e \mathcal{L} f$, then $\exists [e, f]$ in Hom(e, f) s.t. $[e, e] = 1_e$;
- (2) if $x \in C$, $h \in E$ and $h \omega^{l} \mathbf{d}_{x}$, then there exists a **restriction** h|x such that $\mathbf{d}_{h|x} = h$ and $\mathbf{r}_{h|x} \omega^{l} \mathbf{r}_{x}$, in particular, $\mathbf{r}_{\mathbf{d}_{x}|x} \mathcal{L} \mathbf{r}_{x}$ and $x \cdot [\mathbf{r}_{x}, \mathbf{r}_{\mathbf{d}_{x}|x}] = \mathbf{d}_{x}|x;$
- If $e \mathcal{R} f \mathcal{R} g$ or $e \mathcal{L} f \mathcal{L} g$, then $[e, f] \cdot [f, g] = [e, g]$;
- if $g \ \omega \ e$ and $e \ \mathcal{R} \ f$ or $e \ \mathcal{L} \ f$, then $g|[e, f] = [g, gf] \cdot [gf, (gf)^*];$
- (a) if $e \omega' f \omega' d_x$, then e|(f|x) = e|x;
- **o** if $h \omega^l \mathbf{d}_x$ and $\exists x \cdot y$, then $h|(x \cdot y) = (h|x) \cdot (g|y)$, where $g = \mathbf{r}_{h|x}$. Then *C* is a **proper category**.

- if $e \mathcal{R} f$ or $e \mathcal{L} f$, then $\exists [e, f]$ in Hom(e, f) s.t. $[e, e] = 1_e$;
- (2) if $x \in C$, $h \in E$ and $h \omega^{l} \mathbf{d}_{x}$, then there exists a **restriction** h|x such that $\mathbf{d}_{h|x} = h$ and $\mathbf{r}_{h|x} \omega^{l} \mathbf{r}_{x}$, in particular, $\mathbf{r}_{\mathbf{d}_{x}|x} \mathcal{L} \mathbf{r}_{x}$ and $x \cdot [\mathbf{r}_{x}, \mathbf{r}_{\mathbf{d}_{x}|x}] = \mathbf{d}_{x}|x;$
- ◎ if $e \mathcal{R} f \mathcal{R} g$ or $e \mathcal{L} f \mathcal{L} g$, then $[e, f] \cdot [f, g] = [e, g]$;
- if $g \ \omega \ e$ and $e \ \mathcal{R} f$ or $e \ \mathcal{L} f$, then $g|[e, f] = [g, gf] \cdot [gf, (gf)^*];$
- if $e \omega' f \omega' \mathbf{d}_x$, then e|(f|x) = e|x;
- if $h \omega^{l} \mathbf{d}_{x}$ and $\exists x \cdot y$, then $h|(x \cdot y) = (h|x) \cdot (g|y)$, where $g = \mathbf{r}_{h|x}$. Then *C* is a proper category.

- if $e \mathcal{R} f$ or $e \mathcal{L} f$, then $\exists [e, f]$ in Hom(e, f) s.t. $[e, e] = 1_e$;
- (2) if $x \in C$, $h \in E$ and $h \omega^{l} \mathbf{d}_{x}$, then there exists a **restriction** h|x such that $\mathbf{d}_{h|x} = h$ and $\mathbf{r}_{h|x} \omega^{l} \mathbf{r}_{x}$, in particular, $\mathbf{r}_{\mathbf{d}_{x}|x} \mathcal{L} \mathbf{r}_{x}$ and $x \cdot [\mathbf{r}_{x}, \mathbf{r}_{\mathbf{d}_{x}|x}] = \mathbf{d}_{x}|x;$
- ◎ if $e \mathcal{R} f \mathcal{R} g$ or $e \mathcal{L} f \mathcal{L} g$, then $[e, f] \cdot [f, g] = [e, g]$;
- if $g \ \omega \ e$ and $e \ \mathcal{R} f$ or $e \ \mathcal{L} f$, then $g|[e, f] = [g, gf] \cdot [gf, (gf)^*];$
- (a) if $e \omega' f \omega' \mathbf{d}_x$, then e|(f|x) = e|x;

• if $h \omega^l \mathbf{d}_x$ and $\exists x \cdot y$, then $h|(x \cdot y) = (h|x) \cdot (g|y)$, where $g = \mathbf{r}_{h|x}$. Then C is a **proper category**.

Let (P, \cdot) be a strongly proper category with Ob(P) = U a regular biordered set.

Suppose that $x \in P$, $h \omega^r \mathbf{d}_x$ and $k \omega^l \mathbf{r}_x$. We define that

 $h * x = [h, h\mathbf{d}_x] \cdot h\mathbf{d}_x | x$, and $x * k = x | \mathbf{r}_x k \cdot [\mathbf{r}_x k, k]$.

Define a relation ρ on P by the rule that for any $x, y \in P$,

$$x \rho y \Leftrightarrow \mathbf{d}_x \mathcal{R} \, \mathbf{d}_y, \mathbf{r}_x \mathcal{L} \, \mathbf{r}_y \text{ and } x \cdot [\mathbf{r}_x, \mathbf{r}_y] = [\mathbf{d}_x, \mathbf{d}_y] \cdot y.$$

For $x, y \in P$, $h \in S(\mathbf{r}_x, \mathbf{d}_y)$, we define that

$$\overline{x} \odot \overline{y} = \overline{(x \otimes y)_h},$$

where \bar{x} denote the ho-class of x in P and $(x \otimes y)_h = (x * h) \cdot (h * y)$.

Let (P, \cdot) be a strongly proper category with Ob(P) = U a regular biordered set.

Suppose that $x \in P$, $h \omega^r \mathbf{d}_x$ and $k \omega^l \mathbf{r}_x$. We define that

$$h * x = [h, h\mathbf{d}_x] \cdot h\mathbf{d}_x | x, \text{ and } x * k = x | \mathbf{r}_x k \cdot [\mathbf{r}_x k, k].$$

Define a relation ρ on P by the rule that for any $x, y \in P$,

$$x \rho y \Leftrightarrow \mathbf{d}_x \mathcal{R} \mathbf{d}_y, \mathbf{r}_x \mathcal{L} \mathbf{r}_y \text{ and } x \cdot [\mathbf{r}_x, \mathbf{r}_y] = [\mathbf{d}_x, \mathbf{d}_y] \cdot y.$$

For $x, y \in P$, $h \in S(\mathbf{r}_x, \mathbf{d}_y)$, we define that

$$\overline{x} \odot \overline{y} = \overline{(x \otimes y)_h},$$

where \bar{x} denote the ρ -class of x in P and $(x \otimes y)_h = (x * h) \cdot (h * y)$.

Let (P, \cdot) be a strongly proper category with Ob(P) = U a regular biordered set.

Suppose that $x \in P$, $h \omega^r \mathbf{d}_x$ and $k \omega^l \mathbf{r}_x$. We define that

$$h * x = [h, h\mathbf{d}_x] \cdot h\mathbf{d}_x | x$$
, and $x * k = x | \mathbf{r}_x k \cdot [\mathbf{r}_x k, k]$.

Define a relation ρ on P by the rule that for any $x, y \in P$,

$$x \rho y \Leftrightarrow \mathbf{d}_x \mathcal{R} \, \mathbf{d}_y, \mathbf{r}_x \, \mathcal{L} \, \mathbf{r}_y \text{ and } x \cdot [\mathbf{r}_x, \mathbf{r}_y] = [\mathbf{d}_x, \mathbf{d}_y] \cdot y.$$

For $x, y \in P$, $h \in S(\mathbf{r}_x, \mathbf{d}_y)$, we define that

$$\bar{x}\odot\bar{y}=\overline{(x\otimes y)_h},$$

where \bar{x} denote the ρ -class of x in P and $(x \otimes y)_h = (x * h) \cdot (h * y)$.

Let (P, \cdot) be a strongly proper category with Ob(P) = U a regular biordered set.

Suppose that $x \in P$, $h \omega^r \mathbf{d}_x$ and $k \omega^l \mathbf{r}_x$. We define that

$$h * x = [h, h\mathbf{d}_x] \cdot h\mathbf{d}_x | x$$
, and $x * k = x | \mathbf{r}_x k \cdot [\mathbf{r}_x k, k]$.

Define a relation ρ on P by the rule that for any $x, y \in P$,

$$x \rho y \Leftrightarrow \mathbf{d}_x \mathcal{R} \mathbf{d}_y, \mathbf{r}_x \mathcal{L} \mathbf{r}_y \text{ and } x \cdot [\mathbf{r}_x, \mathbf{r}_y] = [\mathbf{d}_x, \mathbf{d}_y] \cdot y.$$

For $x, y \in P$, $h \in S(\mathbf{r}_x, \mathbf{d}_y)$, we define that

$$\bar{x} \odot \bar{y} = \overline{(x \otimes y)_h},$$

where \bar{x} denote the ρ -class of x in P and $(x \otimes y)_h = (x * h) \cdot (h * y)$.

Let (P, \cdot) be a strongly proper category with Ob(P) = U a regular biordered set.

Suppose that $x \in P$, $h \omega^r \mathbf{d}_x$ and $k \omega^l \mathbf{r}_x$. We define that

$$h * x = [h, h\mathbf{d}_x] \cdot h\mathbf{d}_x | x, \text{ and } x * k = x | \mathbf{r}_x k \cdot [\mathbf{r}_x k, k].$$

Define a relation ρ on P by the rule that for any $x, y \in P$,

$$x
ho y \Leftrightarrow \mathbf{d}_x \, \mathcal{R} \, \mathbf{d}_y, \mathbf{r}_x \, \mathcal{L} \, \mathbf{r}_y \text{ and } x \cdot [\mathbf{r}_x, \mathbf{r}_y] = [\mathbf{d}_x, \mathbf{d}_y] \cdot y.$$

For $x, y \in P$, $h \in S(\mathbf{r}_x, \mathbf{d}_y)$, we define that

$$\bar{x} \odot \bar{y} = \overline{(x \otimes y)_h},$$

where \bar{x} denote the ρ -class of x in P and $(x \otimes y)_h = (x * h) \cdot (h * y)$.

Let S be a weakly U-concordant semigroup. Set $\mathbf{C}(S) = \{(e, x, f) : e \ \widetilde{\mathcal{R}}_U \ x \ \widetilde{\mathcal{L}}_U \ f, \ e, f \in U\},\$

and define a partial binary operation by the rule that

$$(e, x, f) \cdot (u, y, v) = \begin{cases} (e, xy, v) & \text{if } f = u \\ \text{undefine} & \text{otherwise,} \end{cases}$$

where xy is the product of x and y in S.

If $e \mathcal{R} f$ or $e \mathcal{L} f$, then [e, f] = (e, ef, f).

Pre-orders: For any $(e, x, f) \in C(S)$ and $u, v \in U$ with $u \leq_I e$ and $v \leq_r f$, we define that

$$u|(e, x, f) = (u, ux, (ux)^*)$$
 and $(e, x, f)|_V = ((xv)^+, xv, v).$

Fact 9: The set $(\mathbf{C}(S), \cdot)$ forms a strongly proper category with restrictions and co-restrictions as above.

Let S be a weakly U-concordant semigroup. Set

$$\mathbf{C}(S) = \{(e, x, f) : e \ \widetilde{\mathcal{R}}_U \ x \ \widetilde{\mathcal{L}}_U \ f, \ e, f \in U\},$$

and define a partial binary operation by the rule that

$$(e, x, f) \cdot (u, y, v) = \begin{cases} (e, xy, v) & \text{if } f = u \\ \text{undefine} & \text{otherwise,} \end{cases}$$

where xy is the product of x and y in S.

If $e \mathcal{R} f$ or $e \mathcal{L} f$, then [e, f] = (e, ef, f).

Pre-orders: For any $(e, x, f) \in C(S)$ and $u, v \in U$ with $u \leq_I e$ and $v \leq_r f$, we define that

$$u|(e, x, f) = (u, ux, (ux)^*)$$
 and $(e, x, f)|_{v} = ((xv)^+, xv, v)$.

Fact 9: The set $(\mathbf{C}(S), \cdot)$ forms a strongly proper category with restrictions and co-restrictions as above.

Let S be a weakly U-concordant semigroup. Set

$$\mathbf{C}(S) = \{(e, x, f) : e \ \widetilde{\mathcal{R}}_U \ x \ \widetilde{\mathcal{L}}_U \ f, \ e, f \in U\},$$

and define a partial binary operation by the rule that

$$(e, x, f) \cdot (u, y, v) = \begin{cases} (e, xy, v) & \text{if } f = u \\ \text{undefine} & \text{otherwise,} \end{cases}$$

where xy is the product of x and y in S.

If $e \mathcal{R} f$ or $e \mathcal{L} f$, then [e, f] = (e, ef, f).

Pre-orders: For any $(e, x, f) \in C(S)$ and $u, v \in U$ with $u \leq_I e$ and $v \leq_r f$, we define that

$$u|(e, x, f) = (u, ux, (ux)^*)$$
 and $(e, x, f)|_{v} = ((xv)^+, xv, v)$.

Fact 9: The set $(\mathbf{C}(S), \cdot)$ forms a strongly proper category with restrictions and co-restrictions as above.

Let S be a weakly U-concordant semigroup. Set

$$\mathbf{C}(S) = \{(e, x, f) : e \ \widetilde{\mathcal{R}}_U \ x \ \widetilde{\mathcal{L}}_U \ f, \ e, f \in U\},$$

and define a partial binary operation by the rule that

$$(e, x, f) \cdot (u, y, v) = \begin{cases} (e, xy, v) & \text{if } f = u \\ \text{undefine} & \text{otherwise,} \end{cases}$$

where xy is the product of x and y in S.

If
$$e \mathcal{R} f$$
 or $e \mathcal{L} f$, then $[e, f] = (e, ef, f)$.

Pre-orders: For any $(e, x, f) \in C(S)$ and $u, v \in U$ with $u \leq_I e$ and $v \leq_r f$, we define that

$$u|(e, x, f) = (u, ux, (ux)^*)$$
 and $(e, x, f)|v = ((xv)^+, xv, v)$.

Fact 9: The set $(\mathbf{C}(S), \cdot)$ forms a strongly proper category with restrictions and co-restrictions as above.

Let S be a weakly U-concordant semigroup. Set

$$\mathbf{C}(S) = \{(e, x, f) : e \ \widetilde{\mathcal{R}}_U \ x \ \widetilde{\mathcal{L}}_U \ f, \ e, f \in U\},$$

and define a partial binary operation by the rule that

$$(e, x, f) \cdot (u, y, v) = \begin{cases} (e, xy, v) & \text{if } f = u \\ \text{undefine} & \text{otherwise,} \end{cases}$$

where xy is the product of x and y in S.

If
$$e \mathcal{R} f$$
 or $e \mathcal{L} f$, then $[e, f] = (e, ef, f)$.

Pre-orders: For any $(e, x, f) \in C(S)$ and $u, v \in U$ with $u \leq_l e$ and $v \leq_r f$, we define that

$$u|(e, x, f) = (u, ux, (ux)^*)$$
 and $(e, x, f)|v = ((xv)^+, xv, v)$.

Fact 9: The set $(\mathbf{C}(S), \cdot)$ forms a strongly proper category with restrictions and co-restrictions as above.

Theorem The category of weakly *U*-concordant semigroups and admissible morphisms is equivalent to the category of strongly proper categories and proper functors.

Theorem: The category of inductive cancellative categories is equivalent to the category of concordant semigroups. (S. Armstrong, 1988)

Theorem The category of weakly *U*-concordant semigroups and admissible morphisms is equivalent to the category of strongly proper categories and proper functors.

Theorem: The category of inductive cancellative categories is equivalent to the category of concordant semigroups. (S. Armstrong, 1988)