Expansions and covers

Jean-Éric Pin

LIAFA, CNRS and University Paris Diderot

York, November 2011

This talk is partly based on an illuminating lecture given by Jon McCammond in Braga in 2003.

- (1) Covers and expansions
- (2) Mal'cev expansions
- (3) Stabilisers
- $(4) \ {\rm Unitary \ semigroups}$

Removing singularities

In mathematics, objects do not necessarily behave regularly and may sometimes have undesirable properties. A standard attempt to avoid such singularities is to replace defective objects by smoother ones.

The notion of cover in semigroup theory shares the same idea: removing singularities.

An A-generated semigroup is a semigroup S together with a surjective morphism $u \to (u)_S$ from A^+ onto S. Then $(u)_S$ is called the value of u in S.

A morphism between two A-generated semigroups T and S is a surjective semigroup morphism $\gamma: T \rightarrow S$ such that the triangle below is commutative:

A cover associates to each semigroup S a semigroup \widehat{S} and a surjective morphism $\pi_S : \widehat{S} \to S$.

Properties of the cover depend on the type of singularities to be removed. Properties of π are also sometimes required.

For instance, if S is an A-generated semigroup, the map

$$4^+ \xrightarrow{()_S} S$$

is the free cover of S. It gets rid of the relations between the generators.

1

Expansions

An expansion is a functorial cover. It associates (1) to each semigroup S a cover $\pi_S : \widehat{S} \to S$ (2) to each morphism $\varphi : S \to T$ a morphism $\widehat{\varphi} : \widehat{S} \to \widehat{T}$

such that the following diagram commutes:

Covers by ordered monoids

Theorem (Simon 75, Straubing-Thérien 85)

Every finite \mathcal{J} -trivial monoid is covered by a finite ordered monoid in which $x \leq 1$ for each element x.

Theorem (Henckell, Margolis, Pin, Rhodes)

Every finite monoid having at most one idempotent in each \mathcal{R} -class and in each \mathcal{L} -class is covered by a finite ordered monoid in which $e \leq 1$ for each idempotent e.

Varieties

A variety of semigroups is a class of semigroups closed under taking subsemigroups, quotient semigroups and direct products.

A semigroup is commutative iff it satisfies the identity xy = yx. A semigroup is idempotent iff it satisfies the identity $x^2 = x$.

Let E be a set of identities. The variety of semigroups defined by E is the class $\llbracket E \rrbracket$ of all semigroups satisfying all identities of E.

Birkhoff's Theorem (1935). A class of semigroups is a variety iff it can be defined by a set of identities.

V-extensions

Let V be a variety of semigroups. A semigroup morphism $\gamma: T \to S$ is a V-extension of S if, for each idempotent $e \in S$, $\gamma^{-1}(e) \in V$.

V-extensions of an A-generated semigroup S form a category, whose morphisms are the morphisms $\pi: T \to T'$ such that this diagram is commutative:

The Mal'cev expansion as an initial object

Theorem (Universal property)

There is a V-extension of S, denoted $V \bigotimes S$, such that for each V-extension $\gamma : T \to S$, there is a morphism $\alpha : V \bigotimes S \to T$ such that the following diagram commutes:

Construction of the Mal'cev expansion (1)

Let S be an A-generated semigroup. A morphism $\sigma: B^+ \to A^+$ is said to be trivialized by S if there is an idempotent $e \in S$ such that $(\sigma(B^+))_S = e$.

Note. It suffices to have $(\sigma(b))_S = e$ for all $b \in B$.

Construction of the Mal'cev expansion (2)

Given a set E of identities defining \mathbf{V} , the Mal'cev expansion of S is be the semigroup $\mathbf{V} \bigotimes S$ with presentation

 $\langle A \mid \{ \sigma(u) = \sigma(v) \mid (u, v) \in B^+ \times B^+ \text{ is an} \\ \text{identity of } E \text{ and } \sigma \text{ is trivialized by } S \} \rangle$

Proposition

The definition of $\mathbf{V} \bigotimes S$ does not depend on the choice of the identities defining \mathbf{V} . Further it is functorial.

Construction of the Mal'cev expansion (3)

Each relator $\sigma(u) = \sigma(v)$ of the presentation of **V** $\bigotimes S$ satisfies $(\sigma(u))_S = (\sigma(v))_S = e$. Thus there is a unique surjective morphism $\pi : \mathbf{V} \bigotimes S \to S$ such that the following triangle commutes:

Theorem

The morphism π is a V-extension of S.

A semigroup is locally finite if all of its finitely generated subsemigroups are finite.

Theorem (Brown)

Let $\varphi : S \to T$ be a semigroup morphism. If T is locally finite and, for every idempotent $e \in T$, $\varphi^{-1}(e)$ is locally finite, then S is locally finite.

Locally finite varieties

A variety of semigroups V is locally finite if every finitely generated semigroup of V is finite.

Theorem

Let \mathbf{V} be a locally finite variety, A a finite alphabet and S an A-generated semigroup. If S is finite, then $\mathbf{V} \bigotimes S$ is also finite.

Expansion by the trivial variety

Let I be the trivial variety of semigroups and let S be an A-semigroup. Then I $\bigotimes S$ is the semigroup presented by $\langle A \mid \{u = v \mid (u)_S = (v)_S = (v^2)_S\} \rangle$.

Proposition

Let *S* be a finite semigroup. Then the projection $\pi : \mathbf{I} \bigotimes S \to S$ is injective on regular elements: if *x* and *y* are regular elements of $\mathbf{I} \bigotimes S$, then $\pi(x) = \pi(y)$ implies x = y.

The **I**-expansion of B_2

It is the semigroup presented by $\langle \{a, b\} \mid (ab)^2 = ab, (ba)^2 = ba, a^2 = b^2 = 0 \rangle.$

Mal'cev right-zero expansions

It is the semigroup presented by $\langle A \mid \{vu = u \mid (v)_S = (u)_S = (u^2)_S\} \rangle.$

The left [right] Rhodes expansion of a semigroup S is an extension of S by right [left] zero semigroups.

Let S be an A-generated semigroup and let (s_n, \ldots, s_0) be an $\leq_{\mathcal{L}}$ -chain. The reduction $\rho(s_n, \ldots, s_0)$ is obtained from (s_n, \ldots, s_0) by removing all the terms s_i such that $s_{i+1} \mathcal{L} s_i$.

For instance, if $s_5 \mathcal{L} s_4 \leq_{\mathcal{L}} s_3 \mathcal{L} s_2 \mathcal{L} s_1 \leq_{\mathcal{L}} s_0$, then $\rho(s_5, s_4, s_3, s_2, s_1, s_0) = (s_5, s_3, s_0)$.

The Rhodes expansion (2)

Denote by L(S) the set of all $<_{\mathcal{L}}$ -chains of S. Then the following operation makes L(S) a semigroup:

$$(s_n, \dots, s_0)(t_m, \dots, t_0) = \rho(s_n t_m, s_{n-1} t_m, \dots, s_0 t_m, t_m, \dots, t_0)$$

The projection $\pi(s_n, \ldots, s_0) = s_n$ is a morphism from L(S) onto S. Let $\widehat{\varphi} : A^+ \to L(S)$ be the morphism defined by $\widehat{\varphi}(a) = ((a)_S)$. The image $\widehat{S}^{\mathcal{L}} = \widehat{\varphi}(A^+)$ is the Rhodes expansion of S. Note that $()_S = \pi \circ \widehat{\varphi}$.

The Rhodes expansion of B_2

Properties of the Rhodes expansion $\widehat{S}^{\mathcal{L}}$

Let T be a semigroup. The right stabilizer of s is the semigroup $\{t \in T \mid st = s\}$

Proposition

- (1) An element (s_n, \ldots, s_0) of $\widehat{S}^{\mathcal{L}}$ is idempotent iff s_n is idempotent in S.
- (2) For each idempotent e of S, $\pi^{-1}(e)$ is a right zero semigroup.
- (3) For each element s of $\widehat{S}^{\mathcal{L}}$, the right stabilizer of s is an \mathcal{R} -trivial semigroup.

The Birget expansion

Obtained by iterating the left and right Rhodes

expansion, alternatively: $S, \widehat{S}^{\mathcal{L}}, \widehat{\widehat{S}}^{\mathcal{R}}, \widehat{\widehat{S}}^{\mathcal{R}}, \widehat{\widehat{S}}^{\mathcal{L}}$

Theorem

If *S* is finite, this sequence ultimately stabilizes to a finite semigroup, the Birget expansion of *S*. In the Birget expansion of a finite monoid, the $\leq_{\mathcal{R}}$ -order on the \mathcal{R} -classes and the $\leq_{\mathcal{L}}$ -order on the \mathcal{L} -classes form a tree.

Another expansion

Theorem (Le Saec, Pin, Weil 1991)

Every finite semigroup S is a quotient of a finite semigroup \hat{S} in which the right stabilizer of any element is an \mathcal{R} -trivial band, that is, satisfies the identities $x^2 = x$ and xyx = xy.

T-covers

Let T be a submonoid of M. T is dense in M if for each $u \in M$ there are elements $x, y \in M$ such that $xu, uy \in T$. T is reflexive in M if $uv \in T$ implies $vu \in T$. T is unitary in M if $u, uv \in T$ implies $v \in T$ and $u, vu \in T$ implies $v \in T$.

Proposition

T is a dense, reflexive and unitary subsemigroup of *M* iff there is a surjective morphism π from *M* onto a group *G* such that $T = \pi^{-1}(1)$.

T-covers

A *T*-cover of *M* is a monoid \widehat{M} with a dense, reflexive, unitary submonoid \widehat{T} of \widehat{M} and a surjective morphism $\pi : \widehat{M} \to M$ onto *M* whose restriction to \widehat{T} is an isomorphism from \widehat{T} onto *T*.

An *E*-semigroup is a semigroup such that E(S) is a subsemigroup.

An E-commutative semigroup is a semigroup in which the idempotents commute.

A monoid is *E*-dense [*E*-unitary] if E(M) is a dense [unitary] submonoid of *M*.

A semigroup S is *E*-unitary [*E*-dense], if E(S) is a unitary [dense] subsemigroup of S.

An orthodox semigroup is a regular *E*-semigroup.

Theorem (Fountain 1990)

- (1) Every *E*-commutative semigroup has an *E*-commutative unitary cover.
- (2) Every *E*-commutative dense semigroup has an *E*-commutative unitary dense cover.
- (3) Every inverse semigroup has an *E*-unitary inverse cover.

See also McAlister, O'Carroll, Szendrei, Margolis and Pin for the inverse case.

Theorem (Almeida, Pin, Weil 1992)

- (1) Every E-semigroup has an E-unitary cover.
- (2) Every *E*-dense semigroup has an *E*-unitary dense cover.
- (3) Every orthodox semigroup has an *E*-unitary orthodox cover.

D-covers

Let D(M) be the smallest submonoid of M closed under weak conjugation: if $x\bar{x}x = x$ and if $s \in D(M)$, then $xs\bar{x}, \bar{x}sx \in D(M)$.

Theorem (Trotter 95)

Any regular monoid has a *D*-unitary regular cover.

Theorem (Fountain, Pin, Weil 2004)

Every *E*-dense monoid has a *D*-unitary *E*-dense cover.

The following result is a consequence of the former Rhodes kernel conjecture, solved by Ash.

Theorem

Every finite monoid has a finite *D*-unitary cover. Every finite *E*-semigroup has a finite *E*-unitary cover. If the semigroup is regular, the cover can be chosen regular as well.

