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Summary

This talk is partly based on an illuminating lecture
given by Jon McCammond in Braga in 2003.

(1) Covers and expansions

(2) Mal’cev expansions

(3) Stabilisers

(4) Unitary semigroups
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Removing singularities

In mathematics, objects do not necessarily behave
regularly and may sometimes have undesirable
properties. A standard attempt to avoid such
singularities is to replace defective objects by
smoother ones.

The notion of cover in semigroup theory shares the
same idea: removing singularities.
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A-generated semigroups

An A-generated semigroup is a semigroup S

together with a surjective morphism u → (u)S from
A+ onto S. Then (u)S is called the value of u in S.

A morphism between two A-generated semigroups
T and S is a surjective semigroup morphism
γ : T → S such that the triangle below is
commutative:

A+

ST

()S()T

γ



LIAFA, CNRS and University Paris Diderot

Covers

A cover associates to each semigroup S a semigroup
Ŝ and a surjective morphism πS : Ŝ → S.

Properties of the cover depend on the type of
singularities to be removed. Properties of π are also
sometimes required.

For instance, if S is an A-generated semigroup, the
map

A+ S
()S

is the free cover of S. It gets rid of the relations
between the generators.
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Expansions

An expansion is a functorial cover. It associates

(1) to each semigroup S a cover πS : Ŝ → S

(2) to each morphism ϕ : S → T a morphism

ϕ̂ : Ŝ → T̂

such that the following diagram commutes:

S T

Ŝ T̂

πS πT

ϕ

ϕ̂



LIAFA, CNRS and University Paris Diderot

Covers by ordered monoids

Theorem (Simon 75, Straubing-Thérien 85)

Every finite J -trivial monoid is covered by a finite

ordered monoid in which x 6 1 for each element x.

Theorem (Henckell, Margolis, Pin, Rhodes)

Every finite monoid having at most one idempotent

in each R-class and in each L-class is covered by a

finite ordered monoid in which e 6 1 for each

idempotent e.
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Varieties

A variety of semigroups is a class of semigroups
closed under taking subsemigroups, quotient
semigroups and direct products.

A semigroup is commutative iff it satisfies the
identity xy = yx. A semigroup is idempotent iff it
satisfies the identity x2 = x.

Let E be a set of identities. The variety of
semigroups defined by E is the class JEK of all
semigroups satisfying all identities of E.

Birkhoff’s Theorem (1935). A class of semigroups
is a variety iff it can be defined by a set of identities.



LIAFA, CNRS and University Paris Diderot

V-extensions

Let V be a variety of semigroups. A semigroup
morphism γ : T → S is a V-extension of S if, for
each idempotent e ∈ S, γ−1(e) ∈ V.

V-extensions of an A-generated semigroup S form
a category, whose morphisms are the morphisms
π : T → T ′ such that this diagram is commutative:

A+

T T ′

S

()S

γ γ′

π

()T ()T ′
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The Mal’cev expansion as an initial object

Theorem (Universal property)

There is a V-extension of S, denoted V M©S, such

that for each V-extension γ : T → S, there is a

morphism α : V M©S → T such that the following

diagram commutes:

A+

T

V M©S

S

()S

()T

()V M©S

γ

α

π
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Construction of the Mal’cev expansion (1)

Let S be an A-generated semigroup. A morphism
σ : B+ → A+ is said to be trivialized by S if there
is an idempotent e ∈ S such that

(
σ(B+)

)
S
= e.

Note. It suffices to have
(
σ(b)

)
S
= e for all b ∈ B.
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Construction of the Mal’cev expansion (2)

Given a set E of identities defining V, the Mal’cev
expansion of S is be the semigroup V M©S with
presentation

〈A | { σ(u) = σ(v) | (u, v) ∈ B+ ×B+ is an

identity of E and σ is trivialized by S }〉

Proposition

The definition of V M©S does not depend on the

choice of the identities defining V. Further it is

functorial.
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Construction of the Mal’cev expansion (3)

Each relator σ(u) = σ(v) of the presentation of
V M©S satisfies (σ(u))S = (σ(v))S = e. Thus there
is a unique surjective morphism π : V M©S → S

such that the following triangle commutes:

A+

SV M©S

()S
()V M©S

π

Theorem

The morphism π is a V-extension of S.
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Brown’s Theorem

A semigroup is locally finite if all of its finitely
generated subsemigroups are finite.

Theorem (Brown)

Let ϕ : S → T be a semigroup morphism. If T is

locally finite and, for every idempotent e ∈ T ,

ϕ−1(e) is locally finite, then S is locally finite.
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Locally finite varieties

A variety of semigroups V is locally finite if every
finitely generated semigroup of V is finite.

Theorem

Let V be a locally finite variety, A a finite alphabet

and S an A-generated semigroup. If S is finite,

then V M©S is also finite.
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Expansion by the trivial variety

Let I be the trivial variety of semigroups and let S
be an A-semigroup. Then I M©S is the semigroup
presented by

〈
A |

{
u = v | (u)S = (v)S = (v2)S

}〉
.

Proposition

Let S be a finite semigroup. Then the projection

π : I M©S → S is injective on regular elements: if x

and y are regular elements of I M©S, then

π(x) = π(y) implies x = y.
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The I-expansion of B2

It is the semigroup presented by

〈{a, b} | (ab)2 = ab, (ba)2 = ba, a2 = b2 = 0〉.

a b

∗ab aba

bab ∗ ba

∗0

→

∗ab a

b ∗ ba

∗0
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Mal’cev right-zero expansions

It is the semigroup presented by
〈
A |

{
vu = u | (v)S = (u)S = (u2)S

}〉
.

a b

∗ab aba

bab ∗ ba

∗a2 ∗ b2 ∗a2b ∗ b2a ∗a2ba ∗ b2ab

→

∗ab a

b ∗ ba

∗0
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The Rhodes expansion

The left [right] Rhodes expansion of a semigroup S

is an extension of S by right [left] zero semigroups.

Let S be an A-generated semigroup and let
(sn, . . . , s0) be an 6L-chain. The reduction
ρ(sn, . . . , s0) is obtained from (sn, . . . , s0) by
removing all the terms si such that si+1 L si.

For instance, if s5 L s4 6L s3 L s2 L s1 6L s0, then
ρ(s5, s4, s3, s2, s1, s0) = (s5, s3, s0).
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The Rhodes expansion (2)

Denote by L(S) the set of all <L-chains of S. Then
the following operation makes L(S) a semigroup:

(sn, . . . , s0)(tm, . . . , t0) =

ρ(sntm, sn−1tm, . . . , s0tm, tm, . . . , t0)

The projection π(sn, . . . , s0) = sn is a morphism
from L(S) onto S. Let ϕ̂ : A+ → L(S) be the
morphism defined by ϕ̂(a) = ((a)S). The image

ŜL = ϕ̂(A+) is the Rhodes expansion of S. Note
that ()S = π ◦ ϕ̂.
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The Rhodes expansion of B2

∗ (ab) (a)

(b) ∗ (ba)

∗ (0, a) ∗ (0, ab) ∗ (0, b) ∗ (0, ba)

→

∗ab a

b ∗ ba

∗0
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Properties of the Rhodes expansion ŜL

Let T be a semigroup. The right stabilizer of s is
the semigroup {t ∈ T | st = s}

Proposition

(1) An element (sn, . . . , s0) of Ŝ
L is idempotent

iff sn is idempotent in S.

(2) For each idempotent e of S, π−1(e) is a right

zero semigroup.

(3) For each element s of ŜL, the right stabilizer

of s is an R-trivial semigroup.
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The Birget expansion

Obtained by iterating the left and right Rhodes

expansion, alternatively: S, ŜL,
̂̂
SL

R

,
̂̂
ŜL

R
L

,

̂̂̂
ŜL

R
L
R

Theorem

If S is finite, this sequence ultimately stabilizes to a

finite semigroup, the Birget expansion of S.

In the Birget expansion of a finite monoid, the

6R-order on the R-classes and the 6L-order on the

L-classes form a tree.
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Another expansion

Theorem (Le Saec, Pin, Weil 1991)

Every finite semigroup S is a quotient of a finite

semigroup Ŝ in which the right stabilizer of any

element is an R-trivial band, that is, satisfies the

identities x2 = x and xyx = xy.
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T -covers

Let T be a submonoid of M .

T is dense in M if for each u ∈ M there are
elements x, y ∈ M such that xu, uy ∈ T .

T is reflexive in M if uv ∈ T implies vu ∈ T .

T is unitary in M if u, uv ∈ T implies v ∈ T and
u, vu ∈ T implies v ∈ T .

Proposition

T is a dense, reflexive and unitary subsemigroup of

M iff there is a surjective morphism π from M onto

a group G such that T = π−1(1).
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T -covers

A T -cover of M is a monoid M̂ with a dense,
reflexive, unitary submonoid T̂ of M̂ and a

surjective morphism π : M̂ → M onto M whose
restriction to T̂ is an isomorphism from T̂ onto T .

T

T̂

M

M̂

G

π π
γ
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E-unitary covers

An E-semigroup is a semigroup such that E(S) is a
subsemigroup.

An E-commutative semigroup is a semigroup in
which the idempotents commute.

A monoid is E-dense [E-unitary] if E(M) is a dense
[unitary] submonoid of M .

A semigroup S is E-unitary [E-dense], if E(S) is a
unitary [dense] subsemigroup of S.

An orthodox semigroup is a regular E-semigroup.
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E-commutative covers

Theorem (Fountain 1990)

(1) Every E-commutative semigroup has an

E-commutative unitary cover.

(2) Every E-commutative dense semigroup has an

E-commutative unitary dense cover.

(3) Every inverse semigroup has an E-unitary

inverse cover.

See also McAlister, O’Carroll, Szendrei, Margolis
and Pin for the inverse case.
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E-unitary covers

Theorem (Almeida, Pin, Weil 1992)

(1) Every E-semigroup has an E-unitary cover.

(2) Every E-dense semigroup has an E-unitary

dense cover.

(3) Every orthodox semigroup has an E-unitary

orthodox cover.
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D-covers

Let D(M) be the smallest submonoid of M closed
under weak conjugation: if xx̄x = x and if
s ∈ D(M), then xsx̄, x̄sx ∈ D(M).

D(M)

D(M̂)

M

M̂

G

π π
γ
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D-covers

Theorem (Trotter 95)

Any regular monoid has a D-unitary regular cover.

Theorem (Fountain, Pin, Weil 2004)

Every E-dense monoid has a D-unitary E-dense

cover.
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The finite case

The following result is a consequence of the former
Rhodes kernel conjecture, solved by Ash.

Theorem

Every finite monoid has a finite D-unitary cover.

Every finite E-semigroup has a finite E-unitary

cover. If the semigroup is regular, the cover can be

chosen regular as well.


