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Mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what
we are saying is true.

Bertrand Russell

I don’t know much about semigroup theory (but João Araújo
has encouraged me to think that the work we have done is of
some importance). But at least I hope that what I tell you is
true!
I should add two remarks: João has helped me greatly with
comments on a preliminary version of this talk; and he is
pressing me to write a book on “Permutation groups for
semigroupists”. . .
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Permutation groups and transformation monoids

A permutation group is a subgroup of the symmetric group
Sym(Ω) on a set Ω. (Usually Ω = {1, 2, . . . , n}, and we write
the symmetric group as Sn.) A transformation monoid is,
analogously, a submonoid of the full transformation monoid
T(Ω) on Ω (or Tn on {1, 2, . . . , n}).

Our knowledge of permutation groups has increased
enormously since the Classification of Finite Simple Groups
(CFSG) was announced in 1980. Can we bring this knowledge
to bear on transformation semigroups?
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Dixon’s Theorem

Theorem
The probability that two random permutations of {1, 2, . . . , n}
generate the symmetric or alternating group tends to 1 as n → ∞.

We have to allow the alternating group since the probability
that two random permutations are both even is 1/4.
We cannot generate Tn with two elements, since we must
include at least two permutations in any generating set.
Moreover, permutations make up an exponentially small
fraction of Tn. So we require many random elements to
generate Tn with high probability.
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Synchronization

The rank of an element of Tn is the cardinality of its image. A
submonoid of Tn is synchronizing if it contains an element of
rank 1.

Conjecture

The probability that two random elements of Tn generate a
synchronizing monoid tends to 1 as n → ∞.
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Here is some data produced by James Mitchell. The first row is
the number n, the second is the number of such pairs of
elements of Tn generating a synchronizing monoid, the third is
the total number n2n of pairs of elements of Tn, and the fourth is
the second divided by the third.

3 4 5 6
549 51520 8063385 1871446896
729 65536 9765625 2176782336

0.7531 0.7861 0.8257 0.8597

These results were obtained using the Citrus and Orb packages
for GAP.



To prove this conjecture, following the proof of Dixon’s
Theorem, there are two steps:

I Describe the maximal non-synchronizing submonoids of
Tn;

I Use Inclusion-Exclusion to count the number of pairs of
elements caught in one of these submonoids, and show
that it is o(n2n).

The first step has been achieved: the maximal non-sychronizing
monoids have been characterised in terms of graphs, though
there is still a gap between the necessary and sufficient
conditions. Certainly, we do not understand these submonoids
well enough to take the second step.
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Synchronizing groups

By abuse of language, we say that the permutation group G on
Ω = {1, . . . , n} is synchronizing if 〈G, f 〉 is a synchronizing
monoid for any f ∈ Tn \ Sn.

Araújo proved that G is non-synchronizing if and only if there is
a non-trivial partition π of Ω and a subset S of Ω such that Sg is
a transversal for π for all g ∈ G; equivalently, if S is a
transversal for πg for all g ∈ G.
(Here and subsequently, any structure M on Ω is trivial if
Aut(M) = Sym(Ω). Thus, the trivial partitions are the partition
into singletons and the partition with a single part.)
This was the result that started the study of synchronizing
groups . . .
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Primitivity

A permutation group G on Ω is primitive if G preserves no
non-trivial partition of Ω. For n > 2, a primitive group is
transitive (since otherwise the partition into an orbit and its
complement is non-trivial).

Araújo observed that a synchronizing group is primitive, since
if the non-trivial partition π is fixed by G, then we can take S to
be any transversal for π to show that G is non-synchronizing.
But the converse is not true.
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Araújo observed that a synchronizing group is primitive, since
if the non-trivial partition π is fixed by G, then we can take S to
be any transversal for π to show that G is non-synchronizing.
But the converse is not true.



Basic groups

The O’Nan–Scott Theorem has been crucial in the application
of CFSG to permutation groups. It divides primitive groups
into five classes, of which the last consists of almost simple
groups, and in the other four we have good information about
the action of the group.

The first case consists of non-basic groups, those which
preserve a Cartesian structure on Ω. More precisely, G is
non-basic if there is a G-invariant bijection between Ω and the
set of all l-tuples over an alphabet of size k, where k, l > 1, such
that G preserves the Hamming metric on the set of tuples.
Now a synchronizing group is basic. For if G is non-basic, take
π to permute the set of tuples according to the value of the first
coordinate, and S to be the set of constant tuples.



Basic groups

The O’Nan–Scott Theorem has been crucial in the application
of CFSG to permutation groups. It divides primitive groups
into five classes, of which the last consists of almost simple
groups, and in the other four we have good information about
the action of the group.
The first case consists of non-basic groups, those which
preserve a Cartesian structure on Ω. More precisely, G is
non-basic if there is a G-invariant bijection between Ω and the
set of all l-tuples over an alphabet of size k, where k, l > 1, such
that G preserves the Hamming metric on the set of tuples.

Now a synchronizing group is basic. For if G is non-basic, take
π to permute the set of tuples according to the value of the first
coordinate, and S to be the set of constant tuples.



Basic groups

The O’Nan–Scott Theorem has been crucial in the application
of CFSG to permutation groups. It divides primitive groups
into five classes, of which the last consists of almost simple
groups, and in the other four we have good information about
the action of the group.
The first case consists of non-basic groups, those which
preserve a Cartesian structure on Ω. More precisely, G is
non-basic if there is a G-invariant bijection between Ω and the
set of all l-tuples over an alphabet of size k, where k, l > 1, such
that G preserves the Hamming metric on the set of tuples.
Now a synchronizing group is basic. For if G is non-basic, take
π to permute the set of tuples according to the value of the first
coordinate, and S to be the set of constant tuples.



Graphs

Synchronzation of G can be detected in terms of G-invariant
graphs, as follows.

The clique number ω(X) of the graph X is the size of the largest
complete subgraph of X; and the chromatic number χ(X) of X
is the smallest number of colours required for the vertices so
that adjacent vertices have different colours. Clearly
ω(X) ≤ χ(X).

Theorem
The permutation group G on Ω is non-synchronizing if and only if
there is a non-trivial G-invariant graph X on Ω with ω(X) = χ(X).
If such a graph exists, then the clique of size ω(X) is a
transversal for any colouring with ω(X) colours, so G is
non-synchronizing. The converse is not much more difficult.
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This test is not computationally efficient: the number of
non-trivial G-invariant graphs is 2r − 2, where r is the number
of G-orbits on 2-element subsets of Ω; and finding clique
number and chromatic number of a graph are NP-hard. (For
graphs with a lot of symmetry, we can use the symmetry to
speed up the computation, as is done in the GAP package
Grape.)

In this way, all primitive groups with degrees into the
hundreds, and some with degrees in the thousands, have been
tested, by Spiga and others.
Note that a simple corollary of the theorem is that a 2-set
transitive group is synchronizing.



This test is not computationally efficient: the number of
non-trivial G-invariant graphs is 2r − 2, where r is the number
of G-orbits on 2-element subsets of Ω; and finding clique
number and chromatic number of a graph are NP-hard. (For
graphs with a lot of symmetry, we can use the symmetry to
speed up the computation, as is done in the GAP package
Grape.)
In this way, all primitive groups with degrees into the
hundreds, and some with degrees in the thousands, have been
tested, by Spiga and others.

Note that a simple corollary of the theorem is that a 2-set
transitive group is synchronizing.



This test is not computationally efficient: the number of
non-trivial G-invariant graphs is 2r − 2, where r is the number
of G-orbits on 2-element subsets of Ω; and finding clique
number and chromatic number of a graph are NP-hard. (For
graphs with a lot of symmetry, we can use the symmetry to
speed up the computation, as is done in the GAP package
Grape.)
In this way, all primitive groups with degrees into the
hundreds, and some with degrees in the thousands, have been
tested, by Spiga and others.
Note that a simple corollary of the theorem is that a 2-set
transitive group is synchronizing.



An example

Let G be the symmetric group of degree n acting on the set Ω of
3-subsets of {1, . . . , m}, with n = (m

3). Then G is primitive if
m ≥ 7.

Theorem
G is synchronizing if and only if m is congruent to 2, 4 or 5 (mod 6)
and m 6= 8.
The proof is quite complicated, using the Erdős–Ko–Rado
theorem, the existence of Steiner triple systems, and Teirlinck’s
theorem on partitions into Steiner triple systems, as well as
Lovász’s Theorem on the chromatic number of the Kneser
graph.
If we replace 3 by 4, we don’t know the complete answer.
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Non-synchronizing ranks

To quantify non-synchronization, I introduced the following
idea. Let G be a permutation group on Ω. We say that the
integer r < n is a non-synchronizing rank of G if there exists a
transformation f with rank r such that 〈G, f 〉 is a
non-synchronizing monoid. Let NS(G) be the set of
non-synchronizing ranks of G.

Thus, NS(G) = ∅ if and only if G is synchronizing.
It is not hard to show that, if 2 ∈ NS(G) or n− 1 ∈ NS(G), then
G is imprimitive.
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The role of primitivity

From this point of view, it is once again primitivity that is the
dividing line:

I If G is imprimitive, then NS(G) ≥ (3/4− o(1))n.
I It is conjectured that, if G is primitive, then NS(G) is much

smaller, maybe only O(log n).
The maximal non-basic group Sk wr Sl, acting on the Cartesian
structure on n = kl points (the set of all l-tuples from {1, . . . , k})
has the property that ki ∈ NS(G) for 1 ≤ i ≤ l− 1. Showing
that this is the “worst case” involves some very intricate
combinatorics and is not yet complete.
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Regularity

I probably don’t need to give this definition here . . .

The element a of a semigroup S is regular in S if there is an
element b of S such that aba = a. A semigroup is regular if all its
elements are.

Which permutation groups G have the property that, if f is
any mapping of rank k, then f is regular in 〈G, f 〉?

We (João Araújo and I) are close to a solution to this question.
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A stronger result

It turns out from our analysis that our condition on G is almost
equivalent to the statement that 〈G, f 〉 is regular for all rank k
maps f . More precisely:

Theorem
Suppose that G is a permutation group of degree n, and k < n/2.
Then, with the exception of two groups with n = 9, k = 4, namely
AGL(2, 3) and ASL(2, 3), the following are equivalent:

I for every f of rank k, f is regular in 〈G, f 〉;
I for every f of rank k, the semigroup 〈G, f 〉 is regular.
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Translation to permutation groups

It is not hard to show that, if fhf = f for some h ∈ 〈G, f 〉, then
we can choose h to be an element of G. So we can look in G for
the answer to our question.

Let f be a map on Ω. The image of f is what you think it is; the
kernel of f is the partition of Ω into the sets f−1(a) for a ∈ Im(f ).
Now if h ∈ G satisfies fhf = f then h maps Im(f ) to a transversal
for Ker(f ).
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for Ker(f ).



We conclude that f is regular in 〈G, f 〉 for every map f of rank k
if and only if G has the following k-universal transversal
property, or k-ut property for short:

Given any partition π with k parts, and every subset K of
cardinality k, there exists g ∈ G such that Kg is a
transversal for π.

So our question is:

Which permutation groups have the k-ut property, for given
k?



First reduction

Given natural numbers k, l with k ≤ l, a permutation group G is
(k, l)-set transitive if, given any sets K, L of cardinalities k, l
respectively, there exists g ∈ G such that Kg ⊆ L. If k = l, we
just say k-set transitive.

It is common to say “homogeneous” rather than
“set-transitive”; I have avoided this since with another hat on I
work on homogeneous structures, and the two meanings of the
term do not sit well together.
If G has the k-ut property, then it is (k− 1, k)-set transitive. For
suppose G has k-ut, and choose K = {a1, . . . , ak−1} and
L = {b1, . . . , bk}. Let π be the partition whose parts are the
singletons of K and the whole of Ω \ K. Then choose g mapping
L to a transversal to π; then g−1 carries K into L.
So a subquestion is:

Which permutation groups G are (k− 1, k)-set transitive?



First reduction

Given natural numbers k, l with k ≤ l, a permutation group G is
(k, l)-set transitive if, given any sets K, L of cardinalities k, l
respectively, there exists g ∈ G such that Kg ⊆ L. If k = l, we
just say k-set transitive.
It is common to say “homogeneous” rather than
“set-transitive”; I have avoided this since with another hat on I
work on homogeneous structures, and the two meanings of the
term do not sit well together.

If G has the k-ut property, then it is (k− 1, k)-set transitive. For
suppose G has k-ut, and choose K = {a1, . . . , ak−1} and
L = {b1, . . . , bk}. Let π be the partition whose parts are the
singletons of K and the whole of Ω \ K. Then choose g mapping
L to a transversal to π; then g−1 carries K into L.
So a subquestion is:

Which permutation groups G are (k− 1, k)-set transitive?



First reduction

Given natural numbers k, l with k ≤ l, a permutation group G is
(k, l)-set transitive if, given any sets K, L of cardinalities k, l
respectively, there exists g ∈ G such that Kg ⊆ L. If k = l, we
just say k-set transitive.
It is common to say “homogeneous” rather than
“set-transitive”; I have avoided this since with another hat on I
work on homogeneous structures, and the two meanings of the
term do not sit well together.
If G has the k-ut property, then it is (k− 1, k)-set transitive. For
suppose G has k-ut, and choose K = {a1, . . . , ak−1} and
L = {b1, . . . , bk}. Let π be the partition whose parts are the
singletons of K and the whole of Ω \ K. Then choose g mapping
L to a transversal to π; then g−1 carries K into L.

So a subquestion is:

Which permutation groups G are (k− 1, k)-set transitive?



First reduction

Given natural numbers k, l with k ≤ l, a permutation group G is
(k, l)-set transitive if, given any sets K, L of cardinalities k, l
respectively, there exists g ∈ G such that Kg ⊆ L. If k = l, we
just say k-set transitive.
It is common to say “homogeneous” rather than
“set-transitive”; I have avoided this since with another hat on I
work on homogeneous structures, and the two meanings of the
term do not sit well together.
If G has the k-ut property, then it is (k− 1, k)-set transitive. For
suppose G has k-ut, and choose K = {a1, . . . , ak−1} and
L = {b1, . . . , bk}. Let π be the partition whose parts are the
singletons of K and the whole of Ω \ K. Then choose g mapping
L to a transversal to π; then g−1 carries K into L.
So a subquestion is:

Which permutation groups G are (k− 1, k)-set transitive?



k-set transitivity

Investigating k-set transitivity, we see that it is equivalent to
(n− k)-set transitivity, so we may assume that k ≤ n/2.
With this assumption, Livingstone and Wagner showed by an
elegant argument that, for k ≥ 5, k-set transitivity implies (and
so is equivalent to) k-transitivity. (A permutation group is
k-transitive if it acts transitively on the set of ordered k-tuples of
distinct points.)

Subsequently Kantor determined all the k-set transitive but not
k-transitive permutation groups, for k = 2, 3, 4. He used results
such as the Feit–Thompson theorem: groups of odd order are
soluble.
By the time CFSG was announced in 1980, it was known that
the classification of k-transitive groups for k ≥ 2 would follow
from it: in particular, the only k-transitive groups for k ≥ 6 are
the symmetric and alternating groups.
So these groups are well understood.
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Classification of k-ut groups

Here are two of our results. For the first, note that (k− 1, k)-set
transitivity is equivalent to (n− k, n− k + 1)-set transitivity, so
we may assume that k ≤ n/2.

Theorem
Suppose that G is (k− 1, k)-set transitive, with k ≤ n/2. Then either
G is (k− 1)-set transitive, or G is one of five specific groups with
(n, k) = (5, 2), (7, 3) or (9, 4).
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The second result is maybe not quite a theorem. A permutation
group G has the 2-ut property if and only if it is primitive. For
given any 2-partition π and any 2-set S, if G is primitive then
the graph with edge set {Sg : g ∈ G} is connected, and so has at
least one edge between parts of π.

For the k-ut property with k > 2, we know that (with a few
possible exceptions) G is (k− 1)-set transitive, and hence
“known”. Of the known groups, some have the k-ut property
and some do not; we have almost completely succeeded in
deciding which is which. When complete, this would give a
complete description of groups with the k-ut property.
Note in particular that almost all groups with the k-ut property
are (k− 1)-set transitive, and hence have the l-ut property for
all l < k.



The second result is maybe not quite a theorem. A permutation
group G has the 2-ut property if and only if it is primitive. For
given any 2-partition π and any 2-set S, if G is primitive then
the graph with edge set {Sg : g ∈ G} is connected, and so has at
least one edge between parts of π.
For the k-ut property with k > 2, we know that (with a few
possible exceptions) G is (k− 1)-set transitive, and hence
“known”. Of the known groups, some have the k-ut property
and some do not; we have almost completely succeeded in
deciding which is which. When complete, this would give a
complete description of groups with the k-ut property.

Note in particular that almost all groups with the k-ut property
are (k− 1)-set transitive, and hence have the l-ut property for
all l < k.



The second result is maybe not quite a theorem. A permutation
group G has the 2-ut property if and only if it is primitive. For
given any 2-partition π and any 2-set S, if G is primitive then
the graph with edge set {Sg : g ∈ G} is connected, and so has at
least one edge between parts of π.
For the k-ut property with k > 2, we know that (with a few
possible exceptions) G is (k− 1)-set transitive, and hence
“known”. Of the known groups, some have the k-ut property
and some do not; we have almost completely succeeded in
deciding which is which. When complete, this would give a
complete description of groups with the k-ut property.
Note in particular that almost all groups with the k-ut property
are (k− 1)-set transitive, and hence have the l-ut property for
all l < k.



A comment

It turns out that, for fixed k, the class of groups which have the
k-ut property but are not symmetric or alternating, is

I empty, if 6 ≤ k ≤ n/2;

I finite, if k = 5;
I infinite, if k = 2 or k = 3.

For k = 4, the group G = M11 (with n = 12) is an exception,
which fails to be 4-set transitive; any other such exception lies
between PSL(2, q) and PΓL(2, q), for prime powers q.
For k = 3, the groups for which we have not been able to
resolve the question are the Suzuki groups.
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Open problems

Among many, I just mention a couple here.

I Prove analogues of these results in other cases, such as
submonoids of the monoid of endomorphisms of a
finite-dimensional vector space, or more generally of an
independence algebra of finite rank.

I Classify the pairs (G, f ), where G ≤ Sn and f ∈ Tn \ Sn, for
which 〈G, f 〉 is regular. (McAlister proved that this holds if
G is any permutation group and f an idempotent of
rank n− 1.)

I A subgroup G of Sn is said to have the weak k-ut property
if there exists a k-set S such that the orbit of S under G
contains a transversal for all k-partitions. Such a set is
called a G-universal transversal set. Classify the groups
with the weak k-ut property; in addition, for each one of
them, classify their G-universal transversal sets.
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