Degree 2 Transformation Semigroups as
Continuous Maps on Graphs

Stuart Margolis, Bar-llan University
John Rhodes, University of California-Berkeley

ENSBAN July 1, 2020



Introduction

In combinatorics and algebra morphisms are usually defined by
preserving direct image:

“A morphism between graphs is a function between vertices
that sends edges to edges.”

“A simplicial map between simplicial complexes is a function
between vertices that sends faces to faces.”

But in topology, morphisms are defined by preservation of
inverse image.

The purpose of the talk is to show how preservation of
structures under inverse image arises naturally in semigroup
theory in many ways.

We concentrate on finite graphs. As far as we know, this
straightforward idea has not been explored elsewhere.



Degree of functions and transformation semigroups

Let f € PFr(V), a partial function f: V — V.

A fiber of fis a subset I of V of the form F' = vf~! for
somev € V.

The degree of f, deg(f) = max{card(F)|F a fiber of f}.

A transformation semigroup (ts) is a pair (V,S) where S'is a
subsemigroup of PER(V).

The degree of (V,S), deg(V, S) = max{deg(f)|f € S}.



Basic Facts About Degrees

Let f.g € PFx(V). Then deg(fg) < deg(f)deg(9).
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It is easy to see that if [V| > 2, then
{f € PFr(V)|deg(f) < k} is a subsemigroup of PFr(V) iff
k<1.

In fact, if V= {1,...n}, then PFg(V) is generated by its
elements of degree at most 1, that is, the symmetric inverse
monoid, and the idempotent of degree 2:

,2—1,3—3,...n—n.

Thus we need some combinatorial constraint to build ts of
degree 2.



Continuous Functions on a Graph

Let I' = (V, E) be a (simple) graph. We write uv if
{u,v} € E.

f € PFg(V) is continuous on T if Vo € VU E then zf~!is
empty or f '€ VUE.

We are treating I' as a simplicial complex and continuous
means that the inverse image of any face is a face.

Let M (I") be the monoid of continuous functions on I". We
have the ts (V, M (I")).

Theorem
(V,M(I")) is a ts of degree at most 2.



The Graph of Fibers of a ts

Let X = (V,.S) be a ts of degree at most 2.

The graph of fibers, I'(X) = (V, E) is the simple graph whose
edges are the fibers of cardinality 2:

E ={{u,v}|lu#v,3f € S,uf =vf}

We have the following “Cayley” or “Preston-Wagner”
Theorem for ts of degree at most 2:

Theorem
Let X = (V,S) be a ts of degree at most 2. Then S is a
subsemigroup of M(I'(X)) and X embeds into (V, M (I'(X))).



The Structure of Continuous Functions on Graphs

Let I' = (V, E) be a graph. We note that M(T") is closed
under restriction of partial functions.

Indeed for all X C V, the partial identity 1|x € M(I"). Thus
for all f € M(I") both the restriction to the domain 1y f and
co-restriction to the range f1x belong to M(I).

Let f € M(I"). Define M(f) ={v e V|F3w #v,vf =wf} be
the union of the set of fibers of size 2 of f.

Define Sing(f), the singular part of f, to be the restriction of
the domain of f to M(f).



The Structure of Singular Functions on Graphs

Recall that a matching ina graph I' = (V,E)isaset M C E
such that no two distinct edges in M have a vertex in
common. An anti — clique (or independent set) is a subset

A C V such that there are no edges between elements of A.

Theorem

LetI' = (V, E) be a graph and let f € M(I'). Then the

following are true.

(i) M(f) is a matching of T".

(i) Im(Sing(f)) is an anti-clique in T,

(iii) Conversely if M = {ey,...,en} is a matching of size m
and A = {vy,...,vy,} is an anti-clique of the same size
m, then the function f : V — V with domain M and
defined by e;f = v;,i = 1,...m is continuous and

f = Sing(f).



The Structure of Injective Functions on Graphs

Let I' = (V, E) be a graph and f € M(I"). The injective part
of f, Inj(f) is defined by Inj(f) = f|pom(r)—m(p)-

A graph morphism between graphs (V, E) and (V' E') is a
function f : V — V' such that if uv € F, then (uf)(vf) € E'.
Note that a bijective graph morphism need not be an

isomorphism of graphs, since not every edge in £/ may be the
image of an edge in F.

Let X C V. The induced graph I'(X) on X has X as vertices
and all edges of I' both of whose vertices are in X.



The Structure of Injective Functions on Graphs

Theorem

Let "= (V, E) be a graph and f € M(I'). Then the following

are true.

(i) Inj(f) is a partial bijection.

(it) Inj(f)~' is a bijective graph morphism from the induced
graph on Image(Inj(f)) to the induced graph on
Dom(Inj(f)).

(iii) Image(Inj(f)) N Image(Sing(f)) =0 and there are no
edges between I'mage(Inj(f)) and Image(Sing(f)).
(Proof:ifu € Image(Inj(f)),v € Image(Sing(f)) and
uv € E, then Card(uv)f~' = 3, contradicting continuity.)

(iv) Conversely, if X,Y CV and g:T'(X) = T(Y) is a
bijective graph morphism, then f = g~! is continuous and

f=1nj(f).



The Structure of Continuous Functions on a Graph

If f and g are partial functions on the same set with disjoint
domains, then their join fV g is the partial function whose
domain is the union of the domains of f and ¢ and such that
z(fVg)=af ifx € Dom(f)and z(f V g) = xg if

x € Dom(g).

In particular, f = Sing(f)V Inj(f) is the join decomposition
of f into its singular and injective parts.

The next Theorem characterizes which functions can serve as
Sing(f) and Inj(f) for a continuous function on a graph.



The Structure of Continuous Functions on a Graph

Theorem

(i)

Let f be a continuous partial function on a graph I'. Then
the partition ker(Sing(f)) is a matching of I' and the
image Im(Sing(f)) is an anti-clique in I'. Moreover,
Im(Sing(f)) N Im(Inj(f)) =0, the inverse partial
function of Inj(f) is a bijective graph morphism onto its
image, and there are no edges between a vertex in
Im(Sing(f)) and a vertex in Im(Inj(f)).

Conversely, let g be a partial function such that ker(g) is
a matching in I" and I'm(g) is an anti-clique in I". Let h
be a partial bijection such that h™' is a bijective graph
morphism onto its image. Assume further that

Dom(g) N Dom(h) = Im(g) N Im(h) = and that there
are no edges between Im(g) and Im(h). Then f =gV h
is continuous and g = Sing(f),h = Inj(f).



Examples

Ezamplel Empty Graphs

Let V' be a non-empty set and let N (V') be the graph with no
edges on V. Then a function f is continuous if and only if

f is a partial bijection, that is, |vf ™| =1 for all v € Im(f).
Therefore M(N(V')) is the symmetric inverse monoid on V/
consisting of all partial bijections on V.



Ezample2 Complete Graphs
Let n > 0 and let K, be the complete graph on n vertices
Vo ={1,...n}. Let f be a continuous function on K.

The image of Sing(f) is an anti-clique and thus
[ Im(Sing(f))] < 1.

If Im(Sing(f)) is empty, then f is a partial bijection on V/,.
Clearly any partial bijection is continuous on K.

Assume then that Im(Sing(f)) = {v} for some v € V/,.
We have seen that for all w € Im(Inj(f)), vw is not an edge.

Therefore, Inj(f) is the empty function and f is a partial
constant function with domain an edge e.



Examples

Let e € E,v € V. Define f., : V — V be the partial constant
function with domain e that sends both vertices of e to v.

Then f,, is continuous.

Therefore M (K,,) consists of the symmetric inverse monoid on
V' together with the collection {f.,le € E,v € V'}.



Examples

Let I' = K, ,,, the complete bipartite graph on 2n vertices,
with bipartition B,UW,, where B,, = {b;...,b,} and

W, = {wy,...w,}.

We compute the monoid of singular continuous functions
SM (K, ), that is, those continuous functions of the form

f = Sing(f) of K, n.
A singular function on K, ,, has a matching as its domain. It is

clear that a matching in K, ,, can be identified with a partial
bijection M : B, — W,,.

The corresponding matching is the set of all edges of the form
bM (b), where b € Dom(M).



Examples

The range of a singular function is an anti-clique and thus lies
wholly in either B,, or W,.

For each partial bijection M of rank k£ we have a unique
singular function on K, ,, by using the associated matching of
M as fibers and sending them arbitrarily to either a k-set in
B,, or a k-set in W,,.

This describes all singular continuous functions on I, ,,.



Decomposition and Complexity of degree 2 ts

The complexity of a finite semigroup S is the least number of
non-trivial groups needed in order to represent S as a
homomorphic image of a subsemigroup of a wreath product of
groups and semigroups whose maximal subgroups are trivial.

Such a decomposition is guaranteed by the Krohn-Rhodes
Theorem. The complexity problem is to compute this minimal
number.

The complexity of PFr(V) is |V| — 1, so there are semigroups
of each complexity n > 0.

Theorem

Let (V,S) be a ts of degree 1. Then S divides the wreath
product ({0,1},{0,1}) ¢ Sym(V'). Consequently, the
complexity of S is at most 1.



Decomposition and Complexity of degree 2 ts

Recall that a right regular band is an idempotent semigroup
S such that zyz = yx for all x,y € S. Equivalently S is a
band in which Green’s L-relation is trivial.

Theorem

Let (V,S) be a ts of degree 2. Then there is a semilattice T', a
right regular band U and groups G+, G5 such that S divides
TG U 1 Gy. Consequently the complexity of S is at most 2.

The well known theorem of Frucht shows that every finite
monoid is the endomorphism monoid of a finite graph in the
category of graphs and graph morphisms. Since there are
monoids of arbitrary complexity the collection of finite
monoids that have faithful representations by ts of degree at
most 2 is a proper collection of monoids.



More generally:

Theorem

Let (V,S) be a ts of degree k. Then there is a ts (Y, T) of
degree k — 1, a right regular band U and a group G such that
S divides T U G. Consequently, by induction, the complexity
of S is at most k.

It follows that for each k& > 0 the collection of finite monoids
that have faithful representations by ts of degree at most & is
a proper collection of finite monoids.



The Smallest Semigroup of Complexity 2

We construct the smallest semigroup of complexity two as a
semigroup of continuous maps on a 4-cycle:

4 3

There are two perfect matchings, namely, 12|34 and 14|23 and
two maximal anti-cliques, 13 and 24.

All 8 possibilities of assigning a perfect matching to a maximal
anti-clique defines a singular continuous map. Thus, for
example, sending 12 — 3, 34 — 1 defines a continuous
function and all 7 other possibilities do as well.



The Smallest Semigroup of Complexity 2

These 8 functions form a semigroup isomorphic to the simple
semigroup S = M (Z,,{1,2},{1,2},C), where C'=

e

We add the identity and the permutation with cycle
decomposition z = (12)(34) which is an automorphism of I"
and thus an invertible continuous map. One can check that
this is a 10 element monoid which is known to be the unique
semigroup of order 10 of complexity 2 and that all semigroups
of order at most 9, have complexity at most 1.



The “Link" to Translational Hulls of 0-Simple Semigroups

Let S = M°(1, A, B,C) be a 0-simple finite semigroup over
the trivial group. We write the matrix C' in “inner product”
notation: C'(b,a) =< b,a >.

For our purposes, we define the translational hull Q(S) to be
the set of all ordered pairs (f, f*), where f € PFr(B),
f* € PFL(A) which are “adjoint” with respect to C"

<bf,a>=<b, ffa>Vaec Abe B

These are the “linked equations.”



The “Link" to Translational Hulls of 0-Simple Semigroups

Let I' = (V, E) be a graph. The graph incidence matrix of V/
is the |V'| x |E| matrix I = I(I") whose entry in position (v, €)
is 1 if v is a vertex of e and 0 otherwise.

If we view I as a simplicial complex, we have the simplicial
incidence matrix, which is the |V| x |[EU V| matrix C' = C(I)
with entries C'(v,w) = 1 if and only if v = w for v,w € V and
as above, C(v,e) = 1 if and only if v is a vertex of the edge e.
Thus, C' = [I|1y], where 1y is the |V| x |V| identity matrix.
Let S(T') = M°(1,EUV,V,C)

Theorem

Let ' = (V, E) be a graph. Then the translational hull of

S(I") is isomorphic to the monoid M (I') of all continuous
partial functions. on I



Examples of Translational Hulls

Example 1 Empty Graphs

If N(V') be the empty graph on V, then the matrix C' is the
identity matrix 1, and thus S(NN(V)) is the Brandt semigroup
MO(L ‘/7 ‘/7 1V)

We know that M (N (V))is the symmetric inverse semigroup
on V' and the previous result recovers the well-known result
that the translational hull of the aperiodic Brandt semigroup
on V' is the symmetric inverse monoid on V.



Ezample 2 The 4-cycle.
Let I' be the 4-cycle:

1 2
Then the matrix C' of S(T') is:

[
=)
_ o O
O O =
O O =
O = O
e )
_ o O O

001100

On the next slides we show the Green structure of M(T).

en}



Generalizations and Open Problems

The results of this paper can be generalized to ts of degree
k> 2.

Let S = (V, H) be a simplicial complex of rank k, meaning
that the number of vertices in its largest face is size k. A
partial function f : V' — V is continuous if the inverse image
of each face of S is also a face.

Let X = (V,.S) be a ts of degree k.
A subset W C V is attached if it is contained in some fiber of
X.



Generalizations and Open Problems

Let H be the collection of attached subsets of V.

Then S(X) = (V, H) is a simplicial complex of rank k.

It is known that if M (X) the monoid of continuous functions
on a simplicial complex § = (V, H) of rank k, then
(V,M(X)) is a ts of degree k.

Furthermore, if X = (V,5) is a ts of degree k, then X
embeds into the ts of continuous functions on the simplicial
complex S(X).

As mentioned previously, the complexity of a degree k ts is at
most k.



Generalizations and Open Problems

Problem 1 Decidability of Complexity for ts of degree 2
A ts of degree 2, that has a non-trivial subgroup has
complexity 1 or 2.

Is there an algorithm to decide the complexity of a ts of
degree 27

In particular, is the lower bound in the paper, K. Henckell, J.
Rhodes, and B. Steinberg. “An effective lower bound for the
complexity of finite semigroups and automata” Trans. AMS,
364(4):18151857, 2012.



Generalizations and Open Problems

Problem 2 Decidability of the variety and quasivariety of
semigroups of degree 2

A semigroup S has degree 2 if it has a faithful representation
as a ts (Q, S) of degree 2.

The collection of all finite semigroups of degree 2 is closed
under subsemigroups and direct product (by acting on the
disjoint union.) Let Q)2 be the collection of finite semigroups of
degree 2. ()5 is a quasivariety of finite semigroups.

Is membership in ()5 decidable? Does () have a finite basis of

profinite implications?



Generalizations and Open Problems

Let V5 be the variety of finite semigroups generated by
semigroups of degree 2. Is membership in V5 decidable? Does

V5 have a finite basis of profinite identities?

Bonus from preparing this talk:

Theorem
Vao=Semilattice*Groups*Right Regular Bands*Groups



Generalizations and Open Problems

For degree 1, a Theorem of Schein gives a finite basis of
implications for the collection of semigroups that have a
faithful representation by degree 1 functions and the famous
Theorem of Ash shows that the variety generated by
semigroups of degree 1 is the variety of finite semigroups
whose idempotents commute.

All of these questions can also be asked for the collection of all
finite semigroups that have faithful degree k representations
forall k > 1.
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Unsolicited Advice

Write down some graphs. Compute their monoids of

continuous functions. Say something interesting...



Wishes

STAY SAFE AND HEALTHY DEAR FRIENDS!!!



