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Equations over free monoids and free groups

» A= {a,b,...} -alphabet, Q= {X,Y,...} - setof variables,
» Word equation: a pair (L,R) € (A U Q)* x (A U Q)* written L = R.
» System of word equations: {L; = Ry, ..., Ly = Ri}.

» Solution: a homomorphism o : (A U Q)* — A* leaving A invariant
such that o(L;) = o(R;) for 1 <i < k.

Example
A={a,b},Q={X,Y,Z,U}

XaUZaU = YZbXaabY
One solution is given by o defined by
X — abb, Y — ab, Z — ba, U — bab, giving
(abb)a(bab)(ba)a(bab) = abbababbaabab = (ab)(ba)b(abb)aab(ab).

Equations over free groups: Similar but with equations L = R where L and
R are words over AT! U QF!. e.g. XabX~! = ba has solution X = b.



Diophantine problem

Diophantine problem - a decision problem

Does there exist an algorithm which for any system of finitely many
equations in a given group (or monoid) can determine whether the equation
has a solution?

Theorem (Makanin (1977, 1983))
The Diophantine problem is:
» decidable in any free monoid, and

> decidable in any free group.



Equations over finitely presented monoids

<A|R>:<ala"~7an ‘ u12V17-~-aum:Vm>
—_—
generators defining relations

» Defines M = A* /p where p is the smallest congruence on A*
containing R.

» Solution to a system of equations {L; = Ry, ..., L; = Ry}:
a homomorphism o : (A U Q)* — A* leaving A invariant such that
o(L)/p=o0(R;)/pforl <i<k.

» ie. such that o(L;) = o(R;) in the monoid M for 1 <i < k.

Example
A={a,b}, Q={X,Y,Z}, (A|R)={a,b|ab = ba)

abbaXbbYabbbb = bYZbbaXbY
One solution is
Xw—a, Y— b, Z— aabbb, giving

abba(a)bb(b)abbbb = a*b® = b(b)(aabbb)bba(a)b(b).



Diophantine problem

Diophantine problem - a decision problem

Does there exist an algorithm which for any system of finitely many
equations in a given group (or monoid) can determine whether the equation
has a solution?

» There are finitely presented groups and monoids for which the problem
is undecidable since e.g.

decidable Diophantine problem = decidable word & conjugacy problem.

» The Diophantine problem is decidable in the following classes
> hyperbolic groups (Rips & Sela (1995), Dahmani & Guirardel (2016))
> right-angled Artin groups (Diekert & Muscholl (2006))
[More generally: free partially commutative monoids (i.e. trace monoids)
with involution.]



One-relator monoids and one-relator groups

Groups

Open Problem

Is the Diophantine problem decidable for one-relator groups i.e. groups
defined by group presentations of the form Gp{A |w = 1)?

» If yes, then as a corollay this would resolve positively the open problem
of whether the conjugacy problem is decidable for one-relator groups.

Magnus (1932) Proved one-relator groups have decidable word problem.

Monoids

Open Problem

Is the Diophantine problem decidable for one-relator monoids i.e. monoids
defined by presentations of the form (A | u = v)?

» If yes, then as a corollay this would resolve positively the open problem
of whether the word problem is decidable for one-relator monoids.



One-relator groups

Some known results

Baumslag-Solitar groups

Kharlampovich, Lépez & Miasnikov (2019) proved the Diophantine
problem is decidable in all soluble Baumslag-Solitar groups

BS(1,k) = Gpla,b | b~ 'ab = "), where k € N.

One-relator groups with torsion
The Diophantine problem is decidable for

» Hyperbolic one-relator groups as a consequence of Rips & Sela (1995),
Dahmani & Guirardel (2016), and in particular for

» One-relator groups with torsion
GplA|w'=1)(n>1),

since they are hyperbolic by B. B. Newman Spelling Theorem (1968).



One-relator monoids

Open Problem

Is the Diophantine problem decidable for one-relator monoids i.e. monoids
defined by presentations of the form (A | u = v)?

> If yes, then as a corollay this would resolve positively the following:

Longstanding open problem
Is the word problem decidable for one-relator monoids (A | u = v)?

While the word problem is open in general, it has been solved in several
cases, including

Theorem (Adjan 1966)

The word problem is decidable for the one relator monoids (A | w = 1).

» The monoids (A | w = 1) are commonly referred to as the special
one-relator monoids.



Word problem and divisibility problem in (A | w = 1)

Word problem
Setting Q) = &, for u,v € A* we are asking whether u = v has a solution.

Theorem (Adjan 1966)

The word problem is decidable for special one relator monoids (A | w = 1).

Divisibility problem
For two words u, v € A* we say u is left divisible by v if there is a word
z € A* such that u = vz in the monoid.

Setting 2 = {X} we are asking whether the equation
u=vxX

has a solution.

Theorem (Makanin 1966)
The left divisibility problem is decidable for special one relator monoids
Alw=1).



Conjugacy problems in (A |w = 1)

Left conjugacy
Set Q) = {X}. The words u,v € A* are left conjugate if the equation

uX = Xv
has a solution.

Cyclic conjugacy

Set 2 = {X,Y}. The words u, v € A* are cyclically conjugate if the system
of equations
{u=XY, v =YX}

has a solution.

Theorem (Otto 1984 & Zhang 1991)

In (A | w = 1) two words are left conjugate if and only if they are cyclically
conjugate. These define equivalence relations on the monoid.



The conjugacy problem in (A |w = 1)

Theorem (Zhang 1989)

Let M be the monoid defined by (A | w = 1) and let G be the group of units
of M. If G has decidable conjugacy problem then M has decidable (left &
cyclic) conjugacy problem.

» Adjan (1966) proved that the group of units of the monoid (A | w = 1)
is a one-relator group.

Corollary (Zhang 1989)

The one relator monoids (A | " = 1), with n > 1, have decidable (left &
cyclic) conjugacy problem.

Proof. Let M the monoid defined by this presentation. By Adjan (1966) G is

a one-relator group with torsion. It follows my Newman (1968) that G has
decidable conjugacy problem. Then apply the theorem. [

Note: All of these results on the word, divisibility, and conjugacy problems
for the monoids (A | w = 1) can be proved by a similar “reduction to the
group of units” approach.



Equations over one-relator monoids: plan of attack

Conjecture

Let M be the monoid defined by (A | w = 1) and let G be the group of units
of M. If G has decidable Diophantine problem then M has decidable
Diophantine problem.

» Then since hyperbolic groups have decidable Diophantine problem:

Corollary of conjecture

Let M be the monoid defined by (A | w = 1) and let G be the group of units
of M. If G is hyperbolic then M has decidable Diophantine problem.

» Then since the group of units of (A | w" = 1) (n > 1) is a one-relator
group with torsion, which is hyperbolic:

Corollary of corollary of conjecture

The one relator monoids (A | w" = 1), with n > 1, have decidable
Diophantine problem.



Minimal invertible pieces of the relator
Let M =~ (A |w = 1). The word w decomposees uniquely as

W= Q.. QG

where each of these factors o, is invertible in M and has no proper
non-empty prefix which is invertible in M. These are called the minimal
invertible pieces of the relator w.

» A ={a; (iel)} < A" be the set of minimal invertible pieces of the
relator w.
» B = {b; | i € I} be an alphabet in bijective correspondence with A.

Theorem (Adjan 1966)
The group of units G of M is isomorphic to the monoid defined by

(B|bybi, ... by =1).

Example
Let M =~ {a,b,c | abacab = 1). Then A = {ab,ac}, B = {x,y} and the
group of units of M is

G,y |xyx = 1) = Gpdx, y | xyx = 1) = Gp(x,y | y = x~%) = Gp(x | ).



Word equations with length constraints (WELCs)

» A= {a,b,...} -alphabet, Q= {X,Y,...} - setof variables,

A system of word equations with length constraints is a system of word
equations Y together with a finite conjunction C of formal expressions of the
form L(wy, wy), each called a length constraint, where wy, w, € (A U Q)*.

A solution is a homomorphism o : (A U )* — A* leaving A invariant such
that:

> o is a solution to the system of word equations 3, and in addition

» |o(w1)| < |o(w2)| for each length constraint L(w;, w;) appearing in C.

The question of whether solving word equations with length constraints
is decidable, is a longstanding open problem in theoretical computer sci-
ence.




WELCs example

Example
A={a,b},Q)={X,Y,Z, U}

XaUZaU = YZbXaabY ,
L(YaZ,XU).

One solution is given by ¢ defined by
X — abb, Y — ab, Z — ba, U — bab,

since we already saw above that this is a solution to the word equation, and
in addition it safisties the length constraint since

|o(YaZ)| = |ababa| = 5 < 6 = |abbbab| = |o(XU)].



Equations over one-relator monoids: plan of attack

Conjecture

Let M be the monoid defined by (A | w = 1) and let G be the group of units
of M. If G has decidable Diophantine problem then M has decidable
Diophantine problem.

» Then since hyperbolic groups have decidable Diophantine problem:

Corollary of conjecture

Let M be the monoid defined by (A | w = 1) and let G be the group of units
of M. If G is hyperbolic then M has decidable Diophantine problem.

» Then since the group of units of (A | w" = 1) (n > 1) is a one-relator
group with torsion, which is hyperbolic:

Corollary of corollary of conjecture

The one relator monoids (A | w" = 1), with n > 1, have decidable
Diophantine problem.



One-relator monoids with torsion

Theorem (Garreta and RDG (2019))

If the Diophantine problem is decidable for one-relator monoids with torsion
(A |w" = 1) (n > 1) then the problem of solving systems of word equations
with length constraints is decidable.

This is a corollary of the following more general result:

Theorem (Garreta and RDG (2019))

LetM = (A|r=1)andlet A < A* be the set of minimal invertible pieces
of r. Suppose that:

(C1) no word from A is a proper subword of any other word from A,

(C2) there exist distinct words v, & € A with a common first letter, say a,
(C3) no word in A starts with a?.

Then there exists a free monoid F of finite rank n > 2 such that the problem
of solving systems of word equations with length constraints, over F, is
reducible to the problem of solving systems of equations in M. Hence, if M
has decidable Diophantine problem then the problem of solving systems of
word equations with length constraints is decidable.



Many one-relator monoids satisfying these conditions

Some examples of monoids satisfying conditions (C1), (C2) and (C3) are the
following (where we indicate the minimal invertible pieces with
parentheses):

» {a,b,c | (ab)(ac)(ab) = 1)

» {a,b,c | ((ab)(ac)(ab))" = 1)forn > 1

» {a,b | (ababb)(abaabb)(ababb) = 1)

» {a,b | ((aba"b"*")(aba" 0"+ 1) (aba"b" 1)) = 1), for all n,m > 1.

As seen in these examples, the family of one-relator monoids satisfying
conditions (C1), (C2), and (C3) includes many one-relator monoids with
torsion (A | w" = 1) (n > 1).



Proof ingredients

Let M = (A|r=1)andlet A € A* be the set of minimal invertible pieces
of r. Suppose that:

(C1) no word from A is a proper subword of any other word from A,
(C2) there exist distinct words v, d € A with a common first letter, say «,
(C3) no word in A starts with a?.

» We prove that there exists a free monoid F of finite rank n > 2 such that
the free monoid with length relation (F, -, 1,=, L) is interpretable in M
by systems of equations.

> Interpretation of a structure M in another structure N is a technical
notion in model theory that approximates the idea of “representing M
inside N”’.



Proof ingredients

Let M =<{A|r = 1)andlet A € A* be the set of minimal invertible pieces

of r.

(ChH
(C2)
(C3)

>

Suppose that:
no word from A is a proper subword of any other word from A,
there exist distinct words 7, d € A with a common first letter, say a,

no word in A starts with a2.

a is right invertible in M and the set of right inverses of elements from
{a) give a submonoid of M which is isomorphic to a free monoid F of
rank > 2.

{a) is interpretable in M by the equation ax = xa.

Since F = {x € M | a'x = 1 for some t € N}, it follows that F is
interpretable in M by the system of two equations ay = ya, yx = 1.
The assumptions imply that ay = 1 for every v € B where B € Fis a
basis of the free monoid F.

To compare lengths of elements d,, d, of the free monoid F we have
|di| < |ds] iff there is an element ¢ € {a) such that cd, = 1 (which
ensures |c| = |d»|) and cd,; belongs to {a) (which ensures |d;| < |c]).



Example

M ~<{a,b,c|abacab = 1), ~ = babac, § = cabab
Note: acab = abac and so bacab = babac in M.

» ~ and ¢ are right inverses of a.
» F = (v,0) is a free submonoid of M with rank 2 with basis {v, ¢}.

Note that:
aaaydy = 1
aaydy = 7y ¢<a)
aaaaydy = ac€la)y

Letd; = v and dy = §0+5. We can see that |d;| < |d»] as follows:
Let ¢ € {a) such that cd, = 1. Then

cdy = 1= ¢ =aaaa = |c| = |dy|

and
cdy = aaayd = a € {ay = |di| < |c|.



A positive result

A case where a reduction to the group of units is possible is when every
letter in the defining relator is invertible.

Theorem (Garreta and RDG (2019))

Let M be the monoid defined by (A | w = 1) and let G be the group of units
of M. Suppose that every letter in w is invertible in M. If the Diophantine
problem is decidable in G then it is decidable in M.

» Proved using a result of Diekert & Lohrey (2008) showing that for
monoids that satisfy a certain cancellation condition, decidability of the
existential theory of word equations is preserved under graph products.



First-order theory

Proposition (Diekert and Lohrey (2008)) The bicyclic monoid
B = (b, c | bc = 1) has decidable first-order theory.?

It follows from this that all of the following are decidable in the bicyclic
monoid:

> the Diophantine problem, the positive universal theory (i.e. identity
checking), the positive AE-theory, ...

Theorem (Garreta and RDG (2019))

LetM = (A |r = 1)andlet A € A* be the set of minimal invertible pieces
of r. Suppose that:

(C1) no word from A is a proper subword of any other word from A, and
(C2) there exist distinct words v, 6 € A with a common first letter, say a.

Then the positive AE-theory of M is undecidable. In particular, M has
undecidable first-order theory.

» Uses the result Durnev (1995), Marchenkov (1982) that the positive
AE-theory with coefficients of free monoids is undecidable.

>They show the theory of the B can be reduced to Presburger arithmetic.



Open problems

Problem
If the word w € A* has no self overlaps, i.e. there is no non-empty word
which is both a proper prefix of w and a proper suffix of w, then is the
Diophantine problem for the one-relator monoid (A | w = 1) decidable?
In particular:

» Does{a,b,c | abc = 1) have decidable Diophantine problem?

> Does (b, c | b*c = 1) have decidable Diophantine problem?

Problem
Do one-relator monoids (A | w" = 1), with n > 1, have decidable
Diophantine problem?

Another direction
Investigate the Diophantine problem for non-special one-relator monoids for
which the word problem is known to be decidable e.g.
» (A |u = v) where |u| = |[v| - homogeneous presentations.
» (A |u = v) where u and v have distinct initial letters and distinct
terminal letters = monoid is group embeddable.



