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Partially Commutative Groups

A group G which has a finite presentation 〈X |R〉 where

R ⊆ {[x , y ] : x , y ∈ X}

is called a partially commutative group.

G corresponds to a graph Γ with vertices X and and edge joining x
and y if and only if [x , y ] = 1 in G .

G will from now on be a partially commutative group with graph Γ.
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Languages

A language L with signature (C ,F ,R) consists of

• a set of constant symbols C ;

• a set of function symbols F , each with a positive integer;

• a set of relation symbols R, each with a positive integer;

e.g.

• language of groups LG : constant 1, unary function −1, binary
function · ;

• language of graphs: one binary relation symbol R.
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Formulae

Formulae of L are built up inductively from

• the symbols of L, =, variables x1, x2, . . .

• logical symbols ¬, ∧, ∨, →,

• and quantifiers ∀, ∃.
In LG atomic formulae have the form w1 = w2, where wi is an
element of the free group on the variables,

and if φ, ψ are formulae then so are ¬φ, φ ∨ ψ, φ ∧ ψ,

and ∃xφ and ∀xφ.

• for example xyzx−1y−1z−1 = 1

• ∀x(xn 6= 1 ∨ x = 1)

• ∀x∀y∀z(x2y2z2 = 1 → [x , y ] = 1 ∧ [x , z ] = 1 ∧ [y , z ] = 1).
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Sentences

A sentence of L is an L-formula with no free variable .

Every sentence is equivalent to one in Prenex Normal Form:

Q1x1 · · ·Qkxkψ

where Qi = ∀ or ∃ and ψ is a quantifier free formula.

A sentence is existential if all Qi = ∃ and universal if all Qi = ∀.
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Equivalence

If an LG-sentence φ holds in a group G write G � φ.

e.g. If A is Abelian A � ∀x∀y([x , y ] = 1).

The elementary theory of G is the set of all LG-sentences φ such
that G � φ.

G and H are elemenarily equivalent, G ≡ H, if they have the
same elementary theory.

Existential and universal theory and equivalence are defined
analagoulsy, replacing sentences with existential or universal
sentences.

Write G ≡∃ H and G ≡∀ H.
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Free and Abelian groups

• Finitely generated non-Abelian free groups are all elementarily
equivalent. (Sela and Miasnikov & Kharlampovich.)

• The elementary theory of free groups is decidable (Miasnikov
& Kharlampovich).

• Two Abelian groups are elementarily equivalent if and only if
their Szmielew invariants are the same.

• Finitely generated torsion-free Abelian groups are elementarily
equivalent if and only their ranks are equal.

• The elementary theory of ordered Abelian groups is decidable
(Gurevich).

• The positve theory of partially commutative groups is
decidable (Casals-Ruiz & Kazachkov).
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Universal and Existential Theory

Let M and N be models of a language L.

∀xφ holds iff ∃x¬φ does not hold; so

M∀∃N iff M ≡∃ N.

F(M) is the set of isomorphism classes of finite subsets of M.

Lemma
M ≡∃ N iff F(M) ≡ F(N).

Corollary

1 All non-Abelian free groups are existentially equivalent.

2 All torsion-free Abelian groups are existentially equivalent.
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Pregroups

A pregroup consists of a set P together with

1 a designtated element 1;

2 an involution −1 defined on P;

3 a relation M ⊆ P × P × P;

such that

1 ∀x , y , z [(x , y , z) ∈ M ∧ (x , y ,w) ∈ M → z = w ]

2 ∀x [(x , 1, x) ∈ M ∧ (1, x , x) ∈ M]

3 ∀x [(x , x−1, 1) ∈ M ∧ (x−1, x , 1) ∈ M]

4 ∀a, b, c , r , s, x [(a, b, r) ∈ M ∧ (b, c , s) ∈ M] → [(r , c , x) ∈
M ↔ (a, s, x) ∈ M]

5 ∀a, b, c , d , x , y , z [(a, b, x) ∈ M ∧ (b, c , y) ∈ M ∧ (c , d , z) ∈
M → [∃r , s[(a, y , r) ∈ M ∨ (y , d , s) ∈ M]]
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Reduced words

Define D = {(a, b) ∈ P × P : (a, b, c) ∈ M for some c ∈ P}.

Write ab for c if (a, b, c) ∈ M.

A word of length n: w = (p1, . . . , pn), pi ∈ P

Reduction: If (pi , pi+1) ∈ D reduce to (p1, . . . , pipi+1, . . . pn)

w is reduced if no such reduction is possible.
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Interleaving

c = (c1, . . . , ck) and a = (a1, . . . , ak−1) words.

If (c1, a1) ∈ D, (a−1
i−1, ci ) and (a−1

i−1ci , ai ) are in D, for
i = 1, . . . , k − 1, and (ak−1, ck) ∈ D

then the interleaving c ∗ a of c and a is

(c1a1, a
−1
1 c2a2, . . . , a

−1
k−2ck−1ak−1, ak−1ck).

Define c ≈ d if and only if d = c ∗ a, for some word a.

Stallings: if c is reduced then so is c ∗ a and ≈ is an equivalence
relation on reduced words over P.
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The Universal Group

The universal group U(P) of P is the set of equivalence classes of
reduced words:

the group operation being concatenation of words followed by
reduction to a reduced word.
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Characterisation of equivalence

Lemma
Let P be a pregroup and let (c1, . . . , cm) and (d1, . . . , dn) be
words. Then (c1, . . . , cm) ≈ (d1, . . . , dn) if and only if m = n and

(d−1
r−1 · · · d

−1
1 c1 · · · cr−1, cr ) ∈ D and (d−1

r , d−1
r−1 · · · d

−1
1 c1 · · · cr ) ∈ D,

r = 1, . . .m, and d−1
m · · · d−1

1 c1 · · · cm = 1.

Corollary

If Q is a subpregroup of a pregroup P then U(Q) is a subgroup of
U(P).
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Pregroups and universal equivalence

The language of pregroups LP :

• constant 1;

• unary function −1;

• ternary relation M.

Theorem
If P1 ≡∃ P2 in LP then U(P1) ≡∃ U(P2) in LG .
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Application to Graphs of Groups

Corollary

Let Γ be a connected, directed graph and let (G, Γ) and (G′, Γ) be
graphs of groups. Suppose the following conditions hold.

1 G(e) = G′(e), for all edges e ∈ ET.

2 G(v) ≡∃ G′(v), for all v ∈ VT,

3 (and some further restrictions on embeddings of edge groups
hold).

Then π1(G,T ) ≡∃ π1(G′,T ).
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Application to Partially Commutative
Groups

Ti a tree:

There are three distinct universal theories.

1 If T1 has one vertex and T2 has 2 vertices then
Z = G (T1) ≡∃ G (T2) = Z2.

2 If T1 and T2 have diameter 2 then G (Ti ) = Fni × Z and
G (T1) ≡∃ G (T2).

3 If T1 and T2 have diameter more than 2 then
G (T1) ≡∃ G (T2).
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