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A group G which has a finite presentation (X|R) where
RC{lxyl:xyeX}
is called a partially commutative group.

G corresponds to a graph I with vertices X and and edge joining x
and y if and only if [x,y] =1 in G.

G will from now on be a partially commutative group with graph I
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Languages

A language L with signature (C, F, R) consists of

e a set of constant symbols C;
e a set of function symbols F, each with a positive integer;

e a set of relation symbols R, each with a positive integer;

e language of groups Lg: constant 1, unary function ~1, binary
function -

e language of graphs: one binary relation symbol R.
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Formulae

Formulae of £ are built up inductively from
e the symbols of £, =, variables x1, x2, . ..
e logical symbols =, A, V, —,
e and quantifiers V, 3.
In Lg atomic formulae have the form w; = wy, where w; is an
element of the free group on the variables,
and if ¢, ¥ are formulae then so are =@, ¢V, ¢ AP,

and dx¢ and Vx¢o.

e for example xyzx "ty lz71 =1
o Vx(x"#1Vx=1)
o UxVyVz(x2y?22 =1 — [x,y] =1A[x,z] =1 A[y,z] = 1).
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Sentences

A sentence of £ is an L-formula with no free variable .

Every sentence is equivalent to one in Prenex Normal Form:
Qux1 -+ Quxt)

where Q; =V or 3 and % is a quantifier free formula.

A sentence is existential if all Q; = 3 and universal if all Q; = V.
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Equivalence

If an Lg-sentence ¢ holds in a group G write G F ¢.
e.g. If Alis Abelian AF VxVy([x,y] =1).

The elementary theory of G is the set of all Lg-sentences ¢ such
that G F ¢.

G and H are elemenarily equivalent, G = H, if they have the
same elementary theory.

Existential and universal theory and equivalence are defined
analagoulsy, replacing sentences with existential or universal
sentences.

Write G =5 H and G =y H.
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Free and Abelian groups

Finitely generated non-Abelian free groups are all elementarily
equivalent. (Sela and Miasnikov & Kharlampovich.)

The elementary theory of free groups is decidable (Miasnikov

& Kharlampovich).

Two Abelian groups are elementarily equivalent if and only if

their Szmielew invariants are the same.

Finitely generated torsion-free Abelian groups are elementarily
equivalent if and only their ranks are equal.

The elementary theory of ordered Abelian groups is decidable
(Gurevich).

The positve theory of partially commutative groups is
decidable (Casals-Ruiz & Kazachkov).
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Universal and Existential Theory

Let M and N be models of a language L.
Vx¢ holds iff 3x—¢ does not hold; so
MvY3N iff M =5 N.

F(M) is the set of isomorphism classes of finite subsets of M.

Lemma
M =3 N iff F(M) = F(N).
Corollary

@ All non-Abelian free groups are existentially equivalent.

® All torsion-free Abelian groups are existentially equivalent.
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Pregroups

A pregroup consists of a set P together with
@ a designtated element 1;
® an involution ~! defined on P;
® arelaton MC Px P x P;
such that
O Vx,y, z[(x,y,z) e MA(x,y,w) E M — z = w]
® Vx[(x,1,x) e MA(1,x,x) € M]
© Vx[(x,x 1, 1) e MA (x7 1, x,1) € M]
O Va,b,c,r,s,x[(a,b,r) € MA(b,c,s) € M] — [(r,c,x) €
M — (a,s,x) € M]
@ Va,b,c,d,x,y,z[(a,b,x) € M A (b,c,y) € MA(c,d,z) €
M — [3r,s[(a,y,r) € MV (y,d,s) € M]]
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Reduced words

Define D = {(a,b) € P x P : (a,b,c) € M for some c € P}.
Write ab for ¢ if (a, b,c) € M.

A word of length n: w = (p1,...,pn), pi € P

Reduction: If (p;, pi+1) € D reduce to (p1,. .., PiPi+1,---Pn)

w is reduced if no such reduction is possible.
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Interleaving

c=(ci,...,ck) and a = (a1,...,ak_1) words.

If (c1,a1) € D, (a;}, ¢;) and (a; % ci, a;) are in D, for
i=1,....,k—1, and (ak_1,¢cx) € D

then the interleaving c x a of c and a is
-1 -1
(cra1,a; "caz,...,a, 5Ck—1ak—1, ak—1Ck)-
Define ¢ = d if and only if d = c x a, for some word a.

Stallings: if ¢ is reduced then so is c*a and = is an equivalence
relation on reduced words over P.
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Characterisation of equivalence

Lemma
Let P be a pregroup and let (ci,...,cm) and (di,...,d,) be
words. Then (ci,...,¢m) =~ (di,...,ds) if and only if m = n and

(dY--dita-co1,¢) €D and (d; 1, d Y - dter ) € D,

r=1,...m, andd,;1~--df1c1---cm:1.

Corollary

If Q is a subpregroup of a pregroup P then U(Q) is a subgroup of
U(P).
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Pregroups and universal equivalence

The language of pregroups Lp:
e constant 1;
e unary function -1.

e ternary relation M.

Theorem
If Py =3 P> in Lp then U(Pl) =3 U(P2) inLg.
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Application to Graphs of Groups

Corollary

Let T be a connected, directed graph and let (G,T) and (G',T) be
graphs of groups. Suppose the following conditions hold.

® G(e) =G'(e), for all edges e € ET.
® G(v)=3G'(v), forallve VT,

© (and some further restrictions on embeddings of edge groups
hold).

Then m(G, T) =3 m(G', T).
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Application to Partially Commutative
Groups

T; a tree:

There are three distinct universal theories.
@ If 71 has one vertex and T> has 2 vertices then
Z = G(T1) =3 G(Tp) = 72
® If T1 and T, have diameter 2 then G(T;) =F, x Z and
G(Tl) =3 G(Tz)
© If T1 and T, have diameter more than 2 then
G(Tl) =3 G(Tg)



