Universal Theory of Pregroups and Partially Commutative Groups

Andrew Duncan, Ilya Kazatchkov, Vladimir Remeslennikov

October 31, 2007

Outline

Partially Commutative Groups

A group G which has a finite presentation $\langle X \mid R\rangle$ where

$$
R \subseteq\{[x, y]: x, y \in X\}
$$

is called a partially commutative group.
G corresponds to a graph 「 with vertices X and and edge joining x and y if and only if $[x, y]=1$ in G.
G will from now on be a partially commutative group with graph「

Partially Commutative Groups

A group G which has a finite presentation $\langle X \mid R\rangle$ where

$$
R \subseteq\{[x, y]: x, y \in X\}
$$

is called a partially commutative group.
G corresponds to a graph Γ with vertices X and and edge joining x and y if and only if $[x, y]=1$ in G.
G will from now on be a partially commutative group with graph 「.

Partially Commutative Groups

A group G which has a finite presentation $\langle X \mid R\rangle$ where

$$
R \subseteq\{[x, y]: x, y \in X\}
$$

is called a partially commutative group.
G corresponds to a graph Γ with vertices X and and edge joining x and y if and only if $[x, y]=1$ in G.
G will from now on be a partially commutative group with graph Γ.

Languages

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols F, each with a positive integer;
- a set of relation symbols R, each with a positive integer;
- language of groups $\mathcal{L}_{\mathcal{G}}$: constant 1 , unary function ${ }^{-1}$, binary function
- language of graphs: one binary relation symbol R.

Languages

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols F, each with a positive integer;
- a set of relation symbols R, each with a positive integer;
- language of groups $\mathcal{L}_{\mathcal{G}}$: constant 1 , unary function ${ }^{-1}$, binary function
- language of graphs: one binary relation symbol R.

Languages

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols F, each with a positive integer;
- a set of relation symbols R, each with a positive integer;
- language of groups $\mathcal{L}_{\mathcal{G}}$: constant 1 , unary function ${ }^{-1}$, binary function
- language of graphs: one binary relation symbol R.

Languages

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols F, each with a positive integer;
- a set of relation symbols R, each with a positive integer;
e.g.
- language of groups $\mathcal{L}_{\mathcal{G}}$: constant 1 , unary function ${ }^{-1}$, binary function • ;
- language of graphs: one binary relation symbol R.

Languages

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols F, each with a positive integer;
- a set of relation symbols R, each with a positive integer;
e.g.
- language of groups $\mathcal{L}_{\mathcal{G}}$: constant 1 , unary function ${ }^{-1}$, binary function • ;
- language of graphs: one binary relation symbol R.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables,
and if ϕ, ψ are formulae then so are $-\phi, \phi \vee \psi, \phi \wedge \psi$, and $\exists x \phi$ and $\forall x \phi$.

- for example $x y z x^{-1} y^{-1} z^{-1}=1$
- $\forall x\left(x^{n} \neq 1 \vee x=1\right)$
- $\forall x \forall y \forall z\left(x^{2} y^{2} z^{2}=1 \rightarrow[x, y]=1 \wedge[x, z]=1 \wedge[y, z]=1\right)$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables,
and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$,
and $\exists \times \phi$ and $\forall \times \phi$.

- for example $x y z x^{-1} y^{-1} z^{-1}=1$
- $\forall x\left(x^{n} \neq 1 \vee x=1\right)$
- $\forall x \forall y \forall z\left(x^{2} y^{2} z^{2}=1 \rightarrow[x, y]=1 \wedge[x, z]=1 \wedge[y, z]=1\right)$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables,
and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$, and $\exists x \phi$ and $\forall x \phi$.

- for example $x y z x^{-1} y^{-1} z^{-1}=1$
- $\forall x\left(x^{n} \neq 1 \vee x=1\right)$
- $\forall x \forall y \forall z\left(x^{2} y^{2} z^{2}=1 \rightarrow[x, y]=1 \wedge[x, z]=1 \wedge[y, z]=1\right)$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables,
and if ϕ, ψ are formulae then so are $\neg \phi$,
and $\exists x \phi$ and $\forall x \phi$.

- for example $x y z x^{-1} y^{-1} z^{-1}=1$
- $\forall x\left(x^{n} \neq 1 \vee x=1\right)$
- $\forall x \forall y \forall z\left(x^{2} y^{2} z^{2}=1 \rightarrow[x, y]=1 \wedge[x, z]=1 \wedge[y, z]=1\right)$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables,
and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$,
and $\exists x \phi$ and $\forall x \phi$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables, and if ϕ, ψ are formulae then so are $\neg \phi$,
and $\exists x \phi$ and $\forall x \phi$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables, and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi$,
and $\exists x \phi$ and $\forall x \phi$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables, and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$,
and $\exists x \phi$ and $\forall x \phi$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables, and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$, and $\exists x \phi$ and $\forall x \phi$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables, and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$, and $\exists x \phi$ and $\forall x \phi$.

- for example $x y z x^{-1} y^{-1} z^{-1}=1$
- $\forall x\left(x^{n} \neq 1 \vee x=1\right)$
- $\forall x \forall y \forall z\left(x^{2} y^{2} z^{2}=1 \rightarrow[x, y]=1 \wedge[x, z]=1 \wedge[y, z]=1\right)$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables, and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$, and $\exists x \phi$ and $\forall x \phi$.

- for example $x y z x^{-1} y^{-1} z^{-1}=1$
- $\forall x\left(x^{n} \neq 1 \vee x=1\right)$
- $\forall x \forall y \forall z\left(x^{2} y^{2} z^{2}=1 \rightarrow[x, y]=1 \wedge[x, z]=1 \wedge[y, z]=1\right)$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables, and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$, and $\exists x \phi$ and $\forall x \phi$.

- for example $x y z x^{-1} y^{-1} z^{-1}=1$
- $\forall x\left(x^{n} \neq 1 \vee x=1\right)$
- $\forall x \forall y \forall z\left(x^{2} y^{2} z^{2}=1 \rightarrow[x, y]=1 \wedge[x, z]=1 \wedge[y, z]=1\right)$.

Formulae

Formulae of \mathcal{L} are built up inductively from

- the symbols of $\mathcal{L},=$, variables x_{1}, x_{2}, \ldots
- logical symbols $\neg, \wedge, \vee, \rightarrow$,
- and quantifiers \forall, \exists.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_{1}=w_{2}$, where w_{i} is an element of the free group on the variables, and if ϕ, ψ are formulae then so are $\neg \phi, \phi \vee \psi, \phi \wedge \psi$, and $\exists x \phi$ and $\forall x \phi$.

- for example $x y z x^{-1} y^{-1} z^{-1}=1$
- $\forall x\left(x^{n} \neq 1 \vee x=1\right)$
- $\forall x \forall y \forall z\left(x^{2} y^{2} z^{2}=1 \rightarrow[x, y]=1 \wedge[x, z]=1 \wedge[y, z]=1\right)$.

Sentences

A sentence of \mathcal{L} is an \mathcal{L}-formula with no free variable . Every sentence is equivalent to one in Prenex Normal Form:
where $Q_{i}=\forall$ or \exists and ψ is a quantifier free formula.

A sentence is existential if all $Q_{i}=\exists$ and universal if all $Q_{i}=\forall$.

Sentences

A sentence of \mathcal{L} is an \mathcal{L}-formula with no free variable.
Every sentence is equivalent to one in Prenex Normal Form:

$$
Q_{1} x_{1} \cdots Q_{k} x_{k} \psi
$$

where $Q_{i}=\forall$ or \exists and ψ is a quantifier free formula.
A sentence is existential if all $Q_{i}=\exists$ and universal if all $Q_{i}=\forall$.

Sentences

A sentence of \mathcal{L} is an \mathcal{L}-formula with no free variable.
Every sentence is equivalent to one in Prenex Normal Form:

$$
Q_{1} x_{1} \cdots Q_{k} x_{k} \psi
$$

where $Q_{i}=\forall$ or \exists and ψ is a quantifier free formula.
A sentence is existential if all $Q_{i}=\exists$ and universal if all $Q_{i}=\forall$.

Equivalence

If an $\mathcal{L}_{\mathcal{G}}$-sentence ϕ holds in a group G write $G \vDash \phi$.
e.g. If A is Abelian $A \vDash \forall x \forall y([x, y]=1)$.

The elementary theory of G is the set of all $\mathcal{L}_{\mathcal{G}}$-sentences ϕ such that $G \vDash \phi$.
G and H are elemenarily equivalent, $G \equiv H$, if they have the same elementary theory.

Existential and universal theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

Write $G \equiv_{\exists} H$ and $G \equiv_{\forall} H$.

Equivalence

If an $\mathcal{L}_{\mathcal{G}}$-sentence ϕ holds in a group G write $G \vDash \phi$. e.g. If A is Abelian $A \vDash \forall x \forall y([x, y]=1)$.

The elementary theory of G is the set of all $\mathcal{L}_{\mathcal{G}}$-sentences ϕ such that $G \vDash \phi$.
G and H are elemenarily equivalent, $G \equiv H$, if they have the same elementary theory.

Existential and universal theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

Write $G \equiv_{\exists} H$ and $G \equiv_{\forall} H$.

Equivalence

If an $\mathcal{L}_{\mathcal{G}}$-sentence ϕ holds in a group G write $G \vDash \phi$.
e.g. If A is Abelian $A \vDash \forall x \forall y([x, y]=1)$.

The elementary theory of G is the set of all $\mathcal{L}_{\mathcal{G}}$-sentences ϕ such that $G \vDash \phi$.
G and H are elemenarily equivalent, $G \equiv H$, if they have the same elementary theory.

Existential and universal theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

Write $G \equiv_{\exists} H$ and $G \equiv_{\forall} H$.

Equivalence

If an $\mathcal{L}_{\mathcal{G}}$-sentence ϕ holds in a group G write $G \vDash \phi$.
e.g. If A is Abelian $A \vDash \forall x \forall y([x, y]=1)$.

The elementary theory of G is the set of all $\mathcal{L}_{\mathcal{G}}$-sentences ϕ such that $G \vDash \phi$.
G and H are elemenarily equivalent, $G \equiv H$, if they have the same elementary theory.

Existential and universal theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

Write $G \equiv_{\exists} H$ and $G \equiv_{\forall} H$.

Equivalence

If an $\mathcal{L}_{\mathcal{G}}$-sentence ϕ holds in a group G write $G \vDash \phi$.
e.g. If A is Abelian $A \vDash \forall x \forall y([x, y]=1)$.

The elementary theory of G is the set of all $\mathcal{L}_{\mathcal{G}}$-sentences ϕ such that $G \vDash \phi$.
G and H are elemenarily equivalent, $G \equiv H$, if they have the same elementary theory.

Existential and universal theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

Write $G \equiv{ }_{\exists} H$ and $G \equiv{ }_{\forall} H$.

Equivalence

If an $\mathcal{L}_{\mathcal{G}}$-sentence ϕ holds in a group G write $G \vDash \phi$.
e.g. If A is Abelian $A \vDash \forall x \forall y([x, y]=1)$.

The elementary theory of G is the set of all $\mathcal{L}_{\mathcal{G}}$-sentences ϕ such that $G \vDash \phi$.
G and H are elemenarily equivalent, $G \equiv H$, if they have the same elementary theory.

Existential and universal theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

Write $G \equiv{ }_{\exists} H$ and $G \equiv{ }_{\forall} H$.

Free and Abelian groups

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov \& Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov \& Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich)
- The positve theory of partially commutative groups is decidable (Casals-Ruiz \& Kazachkov)

Free and Abelian groups

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov \& Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov \& Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich)
- The positve theory of partially commutative groups is decidable (Casals-Ruiz \& Kazachkov)

Free and Abelian groups

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov \& Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov \& Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich)
- The positve theory of partially commutative groups is decidable (Casals-Ruiz \& Kazachkov)

Free and Abelian groups

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov \& Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov \& Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich)
- The positve theory of partially commutative groups is decidable (Casals-Ruiz \& Kazachkov)

Free and Abelian groups

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov \& Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov \& Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich).
- The positve theory of partially commutative groups is decidable (Casals-Ruiz \& Kazachkov)

Free and Abelian groups

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov \& Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov \& Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich).
- The positve theory of partially commutative groups is decidable (Casals-Ruiz \& Kazachkov).

Universal and Existential Theory

Let M and N be models of a language \mathcal{L}.
$\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so
$M \forall \exists N$ iff $M \equiv{ }_{\exists} N$.
$\mathcal{F}^{\prime}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma
$M \equiv{ }_{\exists} N$ iff $\mathcal{F}(M) \equiv \mathcal{F}(N)$.
Corollary
(1) All non-Abelian free groups are existentially equivalent.
(2) All torsion-free Abelian groups are existentially equivalent.

Universal and Existential Theory

Let M and N be models of a language \mathcal{L}.
$\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so
$M \forall_{\exists} N$ iff $M \equiv_{\exists} N$.
$\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma
$M \equiv{ }_{\exists} N$ iff $\mathcal{F}(M) \equiv \mathcal{F}(N)$.
Corollary
(1) All non-Abelian free groups are existentially equivalent.
(2) All torsion-free Abelian groups are existentially equivalent.

Universal and Existential Theory

Let M and N be models of a language \mathcal{L}.
$\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so
$M \forall{ }_{\exists} N$ iff $M \equiv{ }_{\exists} N$.
$\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma
$M \equiv{ }_{\exists} N$ iff $\mathcal{F}(M) \equiv \mathcal{F}(N)$.
Corollary
(1) All non-Abelian free groups are existentially equivalent.
(2) All torsion-free Abelian groups are existentially equivalent.

Universal and Existential Theory

Let M and N be models of a language \mathcal{L}.
$\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so
$M \forall{ }_{\exists} N$ iff $M \equiv{ }_{\exists} N$.
$\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma
$M \equiv{ }_{\exists} N$ iff $\mathcal{F}(M) \equiv \mathcal{F}(N)$.
Corollary
(1) All non-Abelian free groups are existentially equivalent.
(2) All torsion-free Abelian groups are existentially equivalent.

Universal and Existential Theory

Let M and N be models of a language \mathcal{L}.
$\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so
$M \forall{ }_{\exists} N$ iff $M \equiv{ }_{\exists} N$.
$\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma
$M \equiv{ }_{\exists} N$ iff $\mathcal{F}(M) \equiv \mathcal{F}(N)$.
(1) All non-Abelian free groups are existentially equivalent.
(2) All torsion-free Abelian groups are existentially equivalent.

Universal and Existential Theory

Let M and N be models of a language \mathcal{L}.
$\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so
$M \forall{ }_{\exists} N$ iff $M \equiv{ }_{\exists} N$.
$\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma
$M \equiv{ }_{\exists} N$ iff $\mathcal{F}(M) \equiv \mathcal{F}(N)$.
Corollary
(1) All non-Abelian free groups are existentially equivalent.
(2) All torsion-free Abelian groups are existentially equivalent.

Universal and Existential Theory

Let M and N be models of a language \mathcal{L}.
$\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so
$M \forall{ }_{\exists} N$ iff $M \equiv{ }_{\exists} N$.
$\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma
$M \equiv{ }_{\exists} N$ iff $\mathcal{F}(M) \equiv \mathcal{F}(N)$.
Corollary
(1) All non-Abelian free groups are existentially equivalent.
(2) All torsion-free Abelian groups are existentially equivalent.

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subset P \times P \times P$;

such that

(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(11) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
$M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$

Pregroups

A pregroup consists of a set P together with
(1) a designtated element 1 ;
(2) an involution ${ }^{-1}$ defined on P;
(3) a relation $M \subseteq P \times P \times P$;
such that
(1) $\forall x, y, z[(x, y, z) \in M \wedge(x, y, w) \in M \rightarrow z=w]$
(2) $\forall x[(x, 1, x) \in M \wedge(1, x, x) \in M]$
(3) $\forall x\left[\left(x, x^{-1}, 1\right) \in M \wedge\left(x^{-1}, x, 1\right) \in M\right]$
(4) $\forall a, b, c, r, s, x[(a, b, r) \in M \wedge(b, c, s) \in M] \rightarrow[(r, c, x) \in$ $M \leftrightarrow(a, s, x) \in M]$
(5) $\forall a, b, c, d, x, y, z[(a, b, x) \in M \wedge(b, c, y) \in M \wedge(c, d, z) \in$ $M \rightarrow[\exists r, s[(a, y, r) \in M \vee(y, d, s) \in M]]$

Reduced words

Define $D=\{(a, b) \in P \times P:(a, b, c) \in M$ for some $c \in P\}$.
Write $a b$ for c if $(a, b, c) \in M$.
A word of length $n: w=\left(p_{1}, \ldots, p_{n}\right), p_{i} \in P$
Reduction: If $\left(p_{i}, p_{i+1}\right) \in D$ reduce to $\left(p_{1}, \ldots, p_{i} p_{i+1}, \ldots p_{n}\right)$
w is reduced if no such reduction is possible.

Reduced words

Define $D=\{(a, b) \in P \times P:(a, b, c) \in M$ for some $c \in P\}$.
Write $a b$ for c if $(a, b, c) \in M$.
A word of length $n: w=\left(p_{1}, \ldots, p_{n}\right), p_{i} \in P$
Reduction: If $\left(p_{i}, p_{i+1}\right) \in D$ reduce to $\left(p_{1}, \ldots, p_{i} p_{i+1}, \ldots p_{n}\right)$
w is reduced if no such reduction is nossible.

Reduced words

Define $D=\{(a, b) \in P \times P:(a, b, c) \in M$ for some $c \in P\}$.
Write $a b$ for c if $(a, b, c) \in M$.
A word of length $n: w=\left(p_{1}, \ldots, p_{n}\right), p_{i} \in P$
Reduction: If $\left(p_{i}, p_{i+1}\right) \in D$ reduce to $\left(p_{1}, \ldots, p_{i} p_{i+1}, \ldots p_{n}\right)$
w is reduced if no such reduction is possible.

Reduced words

Define $D=\{(a, b) \in P \times P:(a, b, c) \in M$ for some $c \in P\}$.
Write $a b$ for c if $(a, b, c) \in M$.
A word of length $n: w=\left(p_{1}, \ldots, p_{n}\right), p_{i} \in P$
Reduction: If $\left(p_{i}, p_{i+1}\right) \in D$ reduce to $\left(p_{1}, \ldots, p_{i} p_{i+1}, \ldots p_{n}\right)$
w is reduced if no such reduction is possible.

Reduced words

Define $D=\{(a, b) \in P \times P:(a, b, c) \in M$ for some $c \in P\}$.
Write $a b$ for c if $(a, b, c) \in M$.
A word of length $n: w=\left(p_{1}, \ldots, p_{n}\right), p_{i} \in P$
Reduction: If $\left(p_{i}, p_{i+1}\right) \in D$ reduce to $\left(p_{1}, \ldots, p_{i} p_{i+1}, \ldots p_{n}\right)$
w is reduced if no such reduction is possible.

Interleaving

$\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{k-1}\right)$ words.
If $\left(c_{1}, a_{1}\right) \in D,\left(a_{i-1}^{-1}, c_{i}\right)$ and $\left(a_{i-1}^{-1} c_{i}, a_{i}\right)$ are in D, for
$i=1, \ldots, k-1$, and $\left(a_{k-1}, c_{k}\right) \in D$
then the interleaving $\mathrm{c} *$ a of c and a is

$$
\left(c_{1} a_{1}, a_{1}^{-1} c_{2} a_{2}, \ldots, a_{k-2}^{-1} c_{k-1} a_{k-1}, a_{k-1} c_{k}\right)
$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d}=\mathbf{c} * \mathbf{a}$, for some word \mathbf{a}.

Stallings: if c is reduced then so is $\mathrm{c} *$ a and \approx is an equivalence relation on reduced words over P.

Interleaving

$\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{k-1}\right)$ words.
If $\left(c_{1}, a_{1}\right) \in D,\left(a_{i-1}^{-1}, c_{i}\right)$ and $\left(a_{i-1}^{-1} c_{i}, a_{i}\right)$ are in D, for $i=1, \ldots, k-1$, and $\left(a_{k-1}, c_{k}\right) \in D$
then the interleaving $\mathrm{c} *$ a of c and a is

$$
\left(c_{1} a_{1}, a_{1}^{-1} c_{2} a_{2}, \ldots, a_{k-2}^{-1} c_{k-1} a_{k-1}, a_{k-1} c_{k}\right) .
$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d}=\mathbf{c} * \mathbf{a}$, for some word \mathbf{a}.
Stallings: if c is reduced then so is $\mathrm{c} *$ a and \approx is an equivalence relation on reduced words over P.

Interleaving

$\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{k-1}\right)$ words.
If $\left(c_{1}, a_{1}\right) \in D,\left(a_{i-1}^{-1}, c_{i}\right)$ and $\left(a_{i-1}^{-1} c_{i}, a_{i}\right)$ are in D, for $i=1, \ldots, k-1$, and $\left(a_{k-1}, c_{k}\right) \in D$
then the interleaving $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is
$\left(c_{1} a_{1}, a_{1}^{-1} c_{2} a_{2}, \ldots, a_{k-2}^{-1} c_{k-1} a_{k-1}, a_{k-1} c_{k}\right)$.
Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d}=\mathbf{c} * \mathbf{a}$, for some word \mathbf{a}.
Stallings: if c is reduced then so is $\mathrm{c} *$ a and \approx is an equivalence relation on reduced words over P.

Interleaving

$\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{k-1}\right)$ words.
If $\left(c_{1}, a_{1}\right) \in D,\left(a_{i-1}^{-1}, c_{i}\right)$ and $\left(a_{i-1}^{-1} c_{i}, a_{i}\right)$ are in D, for $i=1, \ldots, k-1$, and $\left(a_{k-1}, c_{k}\right) \in D$ then the interleaving $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$
\left(c_{1} a_{1}, a_{1}^{-1} c_{2} a_{2}, \ldots, a_{k-2}^{-1} c_{k-1} a_{k-1}, a_{k-1} c_{k}\right)
$$

Define $\mathrm{c} \approx \mathrm{d}$ if and only if $\mathrm{d}=\mathrm{c} * \mathrm{a}$, for some word a .
Stallings: if \mathbf{c} is reduced then so is $\mathbf{c} * \mathbf{a}$ and \approx is an equivalence relation on reduced words over P.

Interleaving

$\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{k-1}\right)$ words.
If $\left(c_{1}, a_{1}\right) \in D,\left(a_{i-1}^{-1}, c_{i}\right)$ and $\left(a_{i-1}^{-1} c_{i}, a_{i}\right)$ are in D, for $i=1, \ldots, k-1$, and $\left(a_{k-1}, c_{k}\right) \in D$
then the interleaving $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$
\left(c_{1} a_{1}, a_{1}^{-1} c_{2} a_{2}, \ldots, a_{k-2}^{-1} c_{k-1} a_{k-1}, a_{k-1} c_{k}\right)
$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d}=\mathbf{c} * \mathbf{a}$, for some word \mathbf{a}.
Stallings: if c is reduced then so is $\mathrm{c} * \mathrm{a}$ and \approx is an equivalence relation on reduced words over P.

Interleaving

$\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{k-1}\right)$ words.
If $\left(c_{1}, a_{1}\right) \in D,\left(a_{i-1}^{-1}, c_{i}\right)$ and $\left(a_{i-1}^{-1} c_{i}, a_{i}\right)$ are in D, for $i=1, \ldots, k-1$, and $\left(a_{k-1}, c_{k}\right) \in D$
then the interleaving $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$
\left(c_{1} a_{1}, a_{1}^{-1} c_{2} a_{2}, \ldots, a_{k-2}^{-1} c_{k-1} a_{k-1}, a_{k-1} c_{k}\right)
$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d}=\mathbf{c} * \mathbf{a}$, for some word \mathbf{a}.
Stallings: if \mathbf{c} is reduced then so is $\mathbf{c} * \mathbf{a}$
and \approx is an equivalence relation on reduced words over P.

Interleaving

$\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{k-1}\right)$ words.
If $\left(c_{1}, a_{1}\right) \in D,\left(a_{i-1}^{-1}, c_{i}\right)$ and $\left(a_{i-1}^{-1} c_{i}, a_{i}\right)$ are in D, for $i=1, \ldots, k-1$, and $\left(a_{k-1}, c_{k}\right) \in D$
then the interleaving $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$
\left(c_{1} a_{1}, a_{1}^{-1} c_{2} a_{2}, \ldots, a_{k-2}^{-1} c_{k-1} a_{k-1}, a_{k-1} c_{k}\right)
$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d}=\mathbf{c} * \mathbf{a}$, for some word \mathbf{a}.
Stallings: if \mathbf{c} is reduced then so is $\mathbf{c} * \mathbf{a}$ and \approx is an equivalence relation on reduced words over P.

The Universal Group

The universal group $U(P)$ of P is the set of equivalence classes of reduced words:
the group operation being concatenation of words followed by reduction to a reduced word.

The Universal Group

The universal group $U(P)$ of P is the set of equivalence classes of reduced words:
the group operation being concatenation of words followed by reduction to a reduced word.

The Universal Group

The universal group $U(P)$ of P is the set of equivalence classes of reduced words:
the group operation being concatenation of words followed by reduction to a reduced word.

Characterisation of equivalence

Lemma

Let P be a pregroup and let $\left(c_{1}, \ldots, c_{m}\right)$ and $\left(d_{1}, \ldots, d_{n}\right)$ be words. Then $\left(c_{1}, \ldots, c_{m}\right) \approx\left(d_{1}, \ldots, d_{n}\right)$ if and only if $m=n$ and
$\left(d_{r-1}^{-1} \cdots d_{1}^{-1} c_{1} \cdots c_{r-1}, c_{r}\right) \in D$ and $\left(d_{r}^{-1}, d_{r-1}^{-1} \cdots d_{1}^{-1} c_{1} \cdots c_{r}\right) \in D$,
$r=1, \ldots m$, and $d_{m}^{-1} \cdots d_{1}^{-1} c_{1} \cdots c_{m}=1$.

Characterisation of equivalence

Lemma

Let P be a pregroup and let $\left(c_{1}, \ldots, c_{m}\right)$ and $\left(d_{1}, \ldots, d_{n}\right)$ be words. Then $\left(c_{1}, \ldots, c_{m}\right) \approx\left(d_{1}, \ldots, d_{n}\right)$ if and only if $m=n$ and
$\left(d_{r-1}^{-1} \cdots d_{1}^{-1} c_{1} \cdots c_{r-1}, c_{r}\right) \in D$ and $\left(d_{r}^{-1}, d_{r-1}^{-1} \cdots d_{1}^{-1} c_{1} \cdots c_{r}\right) \in D$,
$r=1, \ldots m$, and $d_{m}^{-1} \cdots d_{1}^{-1} c_{1} \cdots c_{m}=1$.
Corollary
If Q is a subpregroup of a pregroup P then $U(Q)$ is a subgroup of $U(P)$.

Pregroups and universal equivalence

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1;
- unary function ${ }^{-1}$;
- ternary relation M.

Theorem
If $P_{1} \equiv{ }_{\ni} P_{2}$ in \mathcal{L}_{P} then $U\left(P_{1}\right) \equiv_{\exists} U\left(P_{2}\right)$ in \mathcal{L}_{G}.

Pregroups and universal equivalence

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1 ;
- unary function ${ }^{-1}$;
- ternary relation M.

Theorem
If $P_{1} \equiv{ }_{\exists} P_{2}$ in \mathcal{L}_{P} then $U\left(P_{1}\right) \equiv_{\exists} U\left(P_{2}\right)$ in \mathcal{L}_{G}.

Pregroups and universal equivalence

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1 ;
- unary function ${ }^{-1}$;
- ternary relation M.

Theorem
If $P_{1} \equiv \exists P_{2}$ in \mathcal{L}_{P} then $U\left(P_{1}\right) \equiv_{\exists} U\left(P_{2}\right)$ in \mathcal{L}_{G}.

Pregroups and universal equivalence

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1 ;
- unary function ${ }^{-1}$;
- ternary relation M.

Theorem
If $P_{1} \equiv{ }_{\exists} P_{2}$ in \mathcal{L}_{P} then $U\left(P_{1}\right) \equiv_{\exists} U\left(P_{2}\right)$ in \mathcal{L}_{G}.

Pregroups and universal equivalence

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1 ;
- unary function ${ }^{-1}$;
- ternary relation M.

Theorem
If $P_{1} \equiv_{\exists} P_{2}$ in \mathcal{L}_{P} then $U\left(P_{1}\right) \equiv_{\exists} U\left(P_{2}\right)$ in \mathcal{L}_{G}.

Application to Graphs of Groups

Corollary
Let Γ be a connected, directed graph and let (\mathcal{G}, Γ) and $\left(\mathcal{G}^{\prime}, \Gamma\right)$ be graphs of groups. Suppose the following conditions hold.
(1) $\mathcal{G}(e)=\mathcal{G}^{\prime}(e)$, for all edges $e \in E T$.
(2) $\mathcal{G}(v) \equiv \ni \mathcal{G}^{\prime}(v)$, for all $v \in V T$,
(3) (and some further restrictions on embeddings of edge groups hold).
Then $\pi_{1}(G, T) \equiv \exists \pi_{1}\left(G^{\prime}, T\right)$.

Application to Graphs of Groups

Corollary
Let Γ be a connected, directed graph and let (\mathcal{G}, Γ) and $\left(\mathcal{G}^{\prime}, \Gamma\right)$ be graphs of groups. Suppose the following conditions hold.
(1) $\mathcal{G}(e)=\mathcal{G}^{\prime}(e)$, for all edges $e \in E T$.
(2 $\mathcal{G}(v) \equiv \exists_{\mathcal{G}} \mathcal{G}^{\prime}(v)$, for all $v \in V T$,
(3) (and some further restrictions on embeddings of edge groups hold).
Then $\pi_{1}(\mathcal{G}, T) \equiv \pi_{1}\left(\mathcal{G}^{\prime}, T\right)$.

Application to Graphs of Groups

Corollary

Let Γ be a connected, directed graph and let (\mathcal{G}, Γ) and $\left(\mathcal{G}^{\prime}, \Gamma\right)$ be graphs of groups. Suppose the following conditions hold.
(1) $\mathcal{G}(e)=\mathcal{G}^{\prime}(e)$, for all edges $e \in E T$.
(2) $\mathcal{G}(v) \equiv_{\exists} \mathcal{G}^{\prime}(v)$, for all $v \in V T$,
(3) (and some further restrictions on embeddings of edge groups hold).
Then $\pi_{1}(\mathcal{G}, T) \equiv \exists \pi_{1}\left(\mathcal{G}^{\prime}, T\right)$.

Application to Graphs of Groups

Corollary

Let Γ be a connected, directed graph and let (\mathcal{G}, Γ) and $\left(\mathcal{G}^{\prime}, \Gamma\right)$ be graphs of groups. Suppose the following conditions hold.
(1) $\mathcal{G}(e)=\mathcal{G}^{\prime}(e)$, for all edges $e \in E T$.
(2) $\mathcal{G}(v) \equiv{ }_{\mathcal{G}} \mathcal{G}^{\prime}(v)$, for all $v \in V T$,
(3) (and some further restrictions on embeddings of edge groups hold).
Then $\pi_{1}(\mathcal{G}, T) \equiv{ }_{\ni} \pi_{1}\left(\mathcal{G}^{\prime}, T\right)$.

Application to Partially Commutative
 Groups

T_{i} a tree:
There are three distinct universal theories.
(1) If T_{1} has one vertex and T_{2} has 2 vertices then $\mathbb{Z}=G\left(T_{1}\right) \equiv \exists G\left(T_{2}\right)=\mathbb{Z}^{2}$.
(2) If T_{1} and T_{2} have diameter 2 then $G\left(T_{i}\right)=\mathbb{F}_{n_{i}} \times \mathbb{Z}$ and $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.
(3) If T_{1} and T_{2} have diameter more than 2 then $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.

Application to Partially Commutative
 Groups

T_{i} a tree:
There are three distinct universal theories.
(1) If T_{1} has one vertex and T_{2} has 2 vertices then $\mathbb{Z}=G\left(T_{1}\right) \equiv \exists G\left(T_{2}\right)=\mathbb{Z}^{2}$.
(2) If T_{1} and T_{2} have diameter 2 then $G\left(T_{i}\right)=\mathbb{F}_{n_{i}} \times \mathbb{Z}$ and $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.
(3) If T_{1} and T_{2} have diameter more than 2 then $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.

Application to Partially Commutative
 Groups

T_{i} a tree:
There are three distinct universal theories.
(1) If T_{1} has one vertex and T_{2} has 2 vertices then $\mathbb{Z}=G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)=\mathbb{Z}^{2}$.
(2) If T_{1} and T_{2} have diameter 2 then $G\left(T_{i}\right)=\mathbb{F}_{n_{i}} \times \mathbb{Z}$ and $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$
(3) If T_{1} and T_{2} have diameter more than 2 then $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.

Application to Partially Commutative
 Groups

T_{i} a tree:
There are three distinct universal theories.
(1) If T_{1} has one vertex and T_{2} has 2 vertices then $\mathbb{Z}=G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)=\mathbb{Z}^{2}$.
(2) If T_{1} and T_{2} have diameter 2 then $G\left(T_{i}\right)=\mathbb{F}_{n_{i}} \times \mathbb{Z}$ and $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.
(3) If T_{1} and T_{2} have diameter more than 2 then $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.

Application to Partially Commutative
 Groups

T_{i} a tree:
There are three distinct universal theories.
(1) If T_{1} has one vertex and T_{2} has 2 vertices then

$$
\mathbb{Z}=G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)=\mathbb{Z}^{2}
$$

(2) If T_{1} and T_{2} have diameter 2 then $G\left(T_{i}\right)=\mathbb{F}_{n_{i}} \times \mathbb{Z}$ and $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.
(3) If T_{1} and T_{2} have diameter more than 2 then $G\left(T_{1}\right) \equiv_{\exists} G\left(T_{2}\right)$.

