Universal Theory of Pregroups and Partially Commutative Groups

Andrew Duncan, Ilya Kazatchkov, Vladimir Remeslennikov

October 31, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

Partially Commutative Groups

A group G which has a finite presentation $\langle X|R\rangle$ where

 $R \subseteq \{[x, y] : x, y \in X\}$

is called a *partially commutative* group.

G corresponds to a graph Γ with vertices *X* and and edge joining *x* and *y* if and only if [x, y] = 1 in *G*.

G will from now on be a partially commutative group with graph Γ .

Partially Commutative Groups

A group G which has a finite presentation $\langle X|R\rangle$ where

$$R \subseteq \{[x,y] : x,y \in X\}$$

is called a *partially commutative* group.

G corresponds to a graph Γ with vertices *X* and and edge joining *x* and *y* if and only if [x, y] = 1 in *G*.

G will from now on be a partially commutative group with graph Γ .

Partially Commutative Groups

A group G which has a finite presentation $\langle X|R\rangle$ where

$$R \subseteq \{[x,y] : x,y \in X\}$$

is called a partially commutative group.

G corresponds to a graph Γ with vertices X and and edge joining x and y if and only if [x, y] = 1 in G.

G will from now on be a partially commutative group with graph Γ .

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols F, each with a positive integer;
- a set of relation symbols *R*, each with a positive integer;

- language of groups $\mathcal{L}_{\mathcal{G}} \colon$ constant 1, unary function $^{-1},$ binary function \cdot ;
- language of graphs: one binary relation symbol *R*.

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols *F*, each with a positive integer;
- a set of relation symbols *R*, each with a positive integer;

- language of groups $\mathcal{L}_{\mathcal{G}} \colon$ constant 1, unary function $^{-1},$ binary function \cdot ;
- language of graphs: one binary relation symbol *R*.

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols *F*, each with a positive integer;
- a set of relation symbols *R*, each with a positive integer;

- language of groups $\mathcal{L}_{\mathcal{G}}$: constant 1, unary function $^{-1},$ binary function \cdot ;
- language of graphs: one binary relation symbol *R*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols F, each with a positive integer;
- a set of relation symbols *R*, each with a positive integer;

- language of groups $\mathcal{L}_{\mathcal{G}}$: constant 1, unary function $^{-1}$, binary function \cdot ;
- language of graphs: one binary relation symbol *R*.

A language \mathcal{L} with signature (C, F, R) consists of

- a set of constant symbols C;
- a set of function symbols F, each with a positive integer;
- a set of relation symbols *R*, each with a positive integer;

- language of groups $\mathcal{L}_{\mathcal{G}}$: constant 1, unary function $^{-1},$ binary function \cdot ;
- language of graphs: one binary relation symbol *R*.

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L} , =, variables x_1, x_2, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers ∀, ∃.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L} , =, variables x_1, x_2, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers ∀, ∃.

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L}_{i} =, variables x_{1}, x_{2}, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L}_{i} =, variables x_{1}, x_{2}, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L} , =, variables x_1, x_2, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L} , =, variables x_1, x_2, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L}_{i} =, variables x_{1}, x_{2}, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L}_{i} =, variables x_{1}, x_{2}, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L}_{i} =, variables x_{1}, x_{2}, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L}_{i} =, variables x_{1}, x_{2}, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L} , =, variables x_1, x_2, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L} , =, variables x_1, x_2, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x(x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Formulae of $\mathcal L$ are built up inductively from

- the symbols of \mathcal{L} , =, variables x_1, x_2, \ldots
- logical symbols \neg , \land , \lor , \rightarrow ,
- and quantifiers \forall , \exists .

In $\mathcal{L}_{\mathcal{G}}$ atomic formulae have the form $w_1 = w_2$, where w_i is an element of the free group on the variables,

- for example $xyzx^{-1}y^{-1}z^{-1} = 1$
- $\forall x (x^n \neq 1 \lor x = 1)$
- $\forall x \forall y \forall z (x^2 y^2 z^2 = 1 \rightarrow [x, y] = 1 \land [x, z] = 1 \land [y, z] = 1).$

Sentences

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A sentence of ${\mathcal L}$ is an ${\mathcal L}\text{-formula}$ with no free variable .

Every sentence is equivalent to one in Prenex Normal Form:

 $Q_1 x_1 \cdots Q_k x_k \psi$

where $Q_i = \forall$ or \exists and ψ is a quantifier free formula.

A sentence is **existential** if all $Q_i = \exists$ and **universal** if all $Q_i = \forall$.

Sentences

A sentence of ${\mathcal L}$ is an ${\mathcal L}\text{-formula}$ with no free variable .

Every sentence is equivalent to one in Prenex Normal Form:

 $Q_1 x_1 \cdots Q_k x_k \psi$

where $Q_i = \forall$ or \exists and ψ is a quantifier free formula.

A sentence is **existential** if all $Q_i = \exists$ and **universal** if all $Q_i = \forall$.

Sentences

A sentence of \mathcal{L} is an \mathcal{L} -formula with no free variable .

Every sentence is equivalent to one in Prenex Normal Form:

 $Q_1 x_1 \cdots Q_k x_k \psi$

where $Q_i = \forall$ or \exists and ψ is a quantifier free formula.

A sentence is **existential** if all $Q_i = \exists$ and **universal** if all $Q_i = \forall$.

If an $\mathcal{L}_{\mathcal{G}}$ -sentence ϕ holds in a group \mathcal{G} write $\mathcal{G} \vDash \phi$.

e.g. If A is Abelian $A \vDash \forall x \forall y([x, y] = 1)$.

The **elementary theory** of *G* is the set of all $\mathcal{L}_{\mathcal{G}}$ -sentences ϕ such that $G \vDash \phi$.

G and *H* are **elemenarily equivalent**, $G \equiv H$, if they have the same elementary theory.

Existential and **universal** theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

If an $\mathcal{L}_{\mathcal{G}}$ -sentence ϕ holds in a group G write $G \vDash \phi$.

e.g. If A is Abelian $A \vDash \forall x \forall y ([x, y] = 1)$.

The **elementary theory** of *G* is the set of all $\mathcal{L}_{\mathcal{G}}$ -sentences ϕ such that $G \vDash \phi$.

G and *H* are **elemenarily equivalent**, $G \equiv H$, if they have the same elementary theory.

Existential and **universal** theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

If an $\mathcal{L}_{\mathcal{G}}$ -sentence ϕ holds in a group G write $G \vDash \phi$.

e.g. If A is Abelian $A \vDash \forall x \forall y([x, y] = 1)$.

The **elementary theory** of *G* is the set of all $\mathcal{L}_{\mathcal{G}}$ -sentences ϕ such that $G \vDash \phi$.

G and *H* are **elemenarily equivalent**, $G \equiv H$, if they have the same elementary theory.

Existential and **universal** theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

If an $\mathcal{L}_{\mathcal{G}}$ -sentence ϕ holds in a group G write $G \vDash \phi$.

e.g. If A is Abelian $A \vDash \forall x \forall y([x, y] = 1)$.

The **elementary theory** of *G* is the set of all $\mathcal{L}_{\mathcal{G}}$ -sentences ϕ such that $G \vDash \phi$.

G and *H* are **elemenarily equivalent**, $G \equiv H$, if they have the same elementary theory.

Existential and **universal** theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

If an $\mathcal{L}_{\mathcal{G}}$ -sentence ϕ holds in a group \mathcal{G} write $\mathcal{G} \vDash \phi$.

e.g. If A is Abelian $A \vDash \forall x \forall y([x, y] = 1)$.

The **elementary theory** of *G* is the set of all $\mathcal{L}_{\mathcal{G}}$ -sentences ϕ such that $G \vDash \phi$.

G and *H* are **elemenarily equivalent**, $G \equiv H$, if they have the same elementary theory.

Existential and **universal** theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

If an $\mathcal{L}_{\mathcal{G}}$ -sentence ϕ holds in a group \mathcal{G} write $\mathcal{G} \vDash \phi$.

e.g. If A is Abelian $A \vDash \forall x \forall y([x, y] = 1)$.

The **elementary theory** of *G* is the set of all $\mathcal{L}_{\mathcal{G}}$ -sentences ϕ such that $G \vDash \phi$.

G and *H* are **elemenarily equivalent**, $G \equiv H$, if they have the same elementary theory.

Existential and **universal** theory and equivalence are defined analagoulsy, replacing sentences with existential or universal sentences.

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov & Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov & Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich).
- The positve theory of partially commutative groups is decidable (Casals-Ruiz & Kazachkov).

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov & Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov & Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich).
- The positve theory of partially commutative groups is decidable (Casals-Ruiz & Kazachkov).

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov & Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov & Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich).
- The positve theory of partially commutative groups is decidable (Casals-Ruiz & Kazachkov).

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov & Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov & Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich).
- The positve theory of partially commutative groups is decidable (Casals-Ruiz & Kazachkov).
Free and Abelian groups

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov & Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov & Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich).
- The positve theory of partially commutative groups is decidable (Casals-Ruiz & Kazachkov).

Free and Abelian groups

- Finitely generated non-Abelian free groups are all elementarily equivalent. (Sela and Miasnikov & Kharlampovich.)
- The elementary theory of free groups is decidable (Miasnikov & Kharlampovich).
- Two Abelian groups are elementarily equivalent if and only if their Szmielew invariants are the same.
- Finitely generated torsion-free Abelian groups are elementarily equivalent if and only their ranks are equal.
- The elementary theory of ordered Abelian groups is decidable (Gurevich).
- The positve theory of partially commutative groups is decidable (Casals-Ruiz & Kazachkov).

Let M and N be models of a language \mathcal{L} .

 $\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so

 $M \forall_{\exists} N$ iff $M \equiv_{\exists} N$.

 $\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma $M \equiv_{\exists} N \text{ iff } \mathcal{F}(M) \equiv \mathcal{F}(N).$

Corollary

All non-Abelian free groups are existentially equivalent.
All torsion-free Abelian groups are existentially equivalent

Let M and N be models of a language \mathcal{L} .

 $\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so

```
M \forall_{\exists} N \text{ iff } M \equiv_{\exists} N.
```

 $\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma $M \equiv_{\exists} N \text{ iff } \mathcal{F}(M) \equiv \mathcal{F}(N).$

Corollary

All non-Abelian free groups are existentially equivalent.
All torsion-free Abelian groups are existentially equivalent

Let M and N be models of a language \mathcal{L} .

 $\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so

 $M \forall_\exists N \text{ iff } M \equiv_\exists N.$

 $\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma $M \equiv_{\exists} N \text{ iff } \mathcal{F}(M) \equiv \mathcal{F}(N).$

Corollary

All non-Abelian free groups are existentially equivalent.
All torsion-free Abelian groups are existentially equivalent

Let M and N be models of a language \mathcal{L} .

 $\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so

 $M \forall_\exists N \text{ iff } M \equiv_\exists N.$

 $\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma $M \equiv_{\exists} N \text{ iff } \mathcal{F}(M) \equiv \mathcal{F}(N).$

Corollary

All non-Abelian free groups are existentially equivalent.
All torsion-free Abelian groups are existentially equivalent

Let M and N be models of a language \mathcal{L} .

 $\forall x \phi$ holds iff $\exists x \neg \phi$ does not hold; so

 $M \forall_\exists N \text{ iff } M \equiv_\exists N.$

 $\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma $M \equiv_\exists N \text{ iff } \mathcal{F}(M) \equiv \mathcal{F}(N).$

Corollary

All non-Abelian free groups are existentially equivalent.
All torsion-free Abelian groups are existentially equivalent

Let M and N be models of a language \mathcal{L} .

```
\forall x \phi holds iff \exists x \neg \phi does not hold; so
```

 $M \forall_\exists N \text{ iff } M \equiv_\exists N.$

 $\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma $M \equiv_\exists N \text{ iff } \mathcal{F}(M) \equiv \mathcal{F}(N).$

Corollary

All non-Abelian free groups are existentially equivalent.
All torsion-free Abelian groups are existentially equivalent.

Let M and N be models of a language \mathcal{L} .

```
\forall x \phi holds iff \exists x \neg \phi does not hold; so
```

 $M \forall_\exists N \text{ iff } M \equiv_\exists N.$

 $\mathcal{F}(M)$ is the set of isomorphism classes of finite subsets of M.

Lemma $M \equiv_\exists N \text{ iff } \mathcal{F}(M) \equiv \mathcal{F}(N).$

Corollary

All non-Abelian free groups are existentially equivalent.
All torsion-free Abelian groups are existentially equivalent.

A **pregroup** consists of a set *P* together with

- a designtated element 1;
- 2 an involution $^{-1}$ defined on P;
- 3 a relation $M \subseteq P \times P \times P$;

- $2 \forall x [(x,1,x) \in M \land (1,x,x) \in M]$
- **3** $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$
- ④ $\forall a, b, c, r, s, x[(a, b, r) \in M \land (b, c, s) \in M] \rightarrow [(r, c, x) \in M \leftrightarrow (a, s, x) \in M]$

A **pregroup** consists of a set P together with

- 1) a designtated element 1;
- 2 an involution $^{-1}$ defined on P;
- **3** a relation $M \subseteq P \times P \times P$;

- $2 \quad \forall x [(x,1,x) \in M \land (1,x,x) \in M]$
- **3** $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$
- ④ $\forall a, b, c, r, s, x[(a, b, r) \in M \land (b, c, s) \in M] \rightarrow [(r, c, x) \in M \leftrightarrow (a, s, x) \in M]$

A **pregroup** consists of a set P together with

- 1) a designtated element 1;
- 2 an involution $^{-1}$ defined on P;
- \bigcirc a relation $M \subseteq P \times P \times P$;

- $2 \quad \forall x [(x,1,x) \in M \land (1,x,x) \in M]$
- **3** $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$

A **pregroup** consists of a set P together with

- 1) a designtated element 1;
- **2** an involution $^{-1}$ defined on *P*;
- **3** a relation $M \subseteq P \times P \times P$;

- $2 \quad \forall x [(x,1,x) \in M \land (1,x,x) \in M]$
- **3** $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$
- **⑤** $\forall a, b, c, d, x, y, z[(a, b, x) \in M \land (b, c, y) \in M \land (c, d, z) \in M \rightarrow [\exists r, s[(a, y, r) \in M \lor (y, d, s) \in M]]$

A **pregroup** consists of a set P together with

- 1) a designtated element 1;
- **2** an involution $^{-1}$ defined on *P*;
- **3** a relation $M \subseteq P \times P \times P$;

- $2 \quad \forall x [(x,1,x) \in M \land (1,x,x) \in M]$
- **3** $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$
- **⑤** $\forall a, b, c, d, x, y, z[(a, b, x) \in M \land (b, c, y) \in M \land (c, d, z) \in M \rightarrow [\exists r, s[(a, y, r) \in M \lor (y, d, s) \in M]]$

A **pregroup** consists of a set P together with

1) a designtated element 1;

2) an involution $^{-1}$ defined on P;

3 a relation
$$M \subseteq P \times P \times P$$
;

- $2 \quad \forall x [(x,1,x) \in M \land (1,x,x) \in M]$
- **3** $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$
- $\exists \forall a, b, c, d, x, y, z[(a, b, x) \in M \land (b, c, y) \in M \land (c, d, z) \in M \rightarrow [\exists r, s[(a, y, r) \in M \lor (y, d, s) \in M]]$

A **pregroup** consists of a set P together with

1) a designtated element 1;

2) an involution $^{-1}$ defined on P;

3 a relation
$$M \subseteq P \times P \times P$$
;

- $2 \forall x [(x,1,x) \in M \land (1,x,x) \in M]$
- **3** $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$

A **pregroup** consists of a set P together with

1) a designtated element 1;

2 an involution $^{-1}$ defined on P;

3 a relation
$$M \subseteq P \times P \times P$$
;

such that

$$2 \ \forall x [(x,1,x) \in M \land (1,x,x) \in M]$$

3 $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$

- **⑤** $\forall a, b, c, d, x, y, z[(a, b, x) \in M \land (b, c, y) \in M \land (c, d, z) \in M \rightarrow [\exists r, s[(a, y, r) \in M \lor (y, d, s) \in M]]$

A **pregroup** consists of a set P together with

1) a designtated element 1;

2 an involution $^{-1}$ defined on P;

3 a relation
$$M \subseteq P \times P \times P$$
;

such that

$$2 \ \forall x [(x,1,x) \in M \land (1,x,x) \in M]$$

3 $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$

A **pregroup** consists of a set P together with

1) a designtated element 1;

2 an involution $^{-1}$ defined on P;

3 a relation
$$M \subseteq P \times P \times P$$
;

such that

(

2
$$\forall x[(x,1,x) \in M \land (1,x,x) \in M]$$

3 $\forall x[(x, x^{-1}, 1) \in M \land (x^{-1}, x, 1) \in M]$

Define $D = \{(a, b) \in P \times P : (a, b, c) \in M \text{ for some } c \in P\}.$

Write ab for c if $(a, b, c) \in M$.

A word of length n: $w=(p_1,\ldots,p_n)$, $p_i\in P$

Reduction: If $(p_i, p_{i+1}) \in D$ reduce to $(p_1, \ldots, p_i p_{i+1}, \ldots, p_n)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define $D = \{(a, b) \in P \times P : (a, b, c) \in M \text{ for some } c \in P\}.$ Write *ab* for *c* if $(a, b, c) \in M$.

A word of length n: $w = (p_1, \ldots, p_n)$, $p_i \in P$

Reduction: If $(p_i, p_{i+1}) \in D$ reduce to $(p_1, \ldots, p_i p_{i+1}, \ldots, p_n)$

Define $D = \{(a, b) \in P \times P : (a, b, c) \in M \text{ for some } c \in P\}.$ Write *ab* for *c* if $(a, b, c) \in M$.

A word of length *n*: $w = (p_1, \ldots, p_n)$, $p_i \in P$

Reduction: If $(p_i, p_{i+1}) \in D$ reduce to $(p_1, \ldots, p_i p_{i+1}, \ldots, p_n)$

Define $D = \{(a, b) \in P \times P : (a, b, c) \in M \text{ for some } c \in P\}.$ Write *ab* for *c* if $(a, b, c) \in M.$

A word of length *n*: $w = (p_1, \ldots, p_n)$, $p_i \in P$

Reduction: If $(p_i, p_{i+1}) \in D$ reduce to $(p_1, \ldots, p_i p_{i+1}, \ldots, p_n)$

Define $D = \{(a, b) \in P \times P : (a, b, c) \in M \text{ for some } c \in P\}.$ Write *ab* for *c* if $(a, b, c) \in M$.

A word of length *n*: $w = (p_1, \ldots, p_n), p_i \in P$

Reduction: If $(p_i, p_{i+1}) \in D$ reduce to $(p_1, \ldots, p_i p_{i+1}, \ldots, p_n)$

$\mathbf{c} = (c_1, \ldots, c_k)$ and $\mathbf{a} = (a_1, \ldots, a_{k-1})$ words.

If $(c_1, a_1) \in D$, (a_{i-1}^{-1}, c_i) and $(a_{i-1}^{-1}c_i, a_i)$ are in D, for $i = 1, \dots, k-1$, and $(a_{k-1}, c_k) \in D$

then the *interleaving* **c** * **a** of **c** and **a** is

$$(c_1a_1, a_1^{-1}c_2a_2, \ldots, a_{k-2}^{-1}c_{k-1}a_{k-1}, a_{k-1}c_k).$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d} = \mathbf{c} * \mathbf{a}$, for some word \mathbf{a} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{c} = (c_1, \dots, c_k)$$
 and $\mathbf{a} = (a_1, \dots, a_{k-1})$ words.
If $(c_1, a_1) \in D$, (a_{i-1}^{-1}, c_i) and $(a_{i-1}^{-1}c_i, a_i)$ are in D , for $i = 1, \dots, k-1$, and $(a_{k-1}, c_k) \in D$

then the *interleaving* **c** * **a** of **c** and **a** is

$$(c_1a_1, a_1^{-1}c_2a_2, \ldots, a_{k-2}^{-1}c_{k-1}a_{k-1}, a_{k-1}c_k).$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d} = \mathbf{c} * \mathbf{a}$, for some word \mathbf{a} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{c} = (c_1, \dots, c_k)$$
 and $\mathbf{a} = (a_1, \dots, a_{k-1})$ words.
If $(c_1, a_1) \in D$, (a_{i-1}^{-1}, c_i) and $(a_{i-1}^{-1}c_i, a_i)$ are in D , for $i = 1, \dots, k-1$, and $(a_{k-1}, c_k) \in D$

then the interleaving $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$(c_1a_1, a_1^{-1}c_2a_2, \ldots, a_{k-2}^{-1}c_{k-1}a_{k-1}, a_{k-1}c_k).$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d} = \mathbf{c} * \mathbf{a}$, for some word \mathbf{a} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{c} = (c_1, \dots, c_k)$$
 and $\mathbf{a} = (a_1, \dots, a_{k-1})$ words.
If $(c_1, a_1) \in D$, (a_{i-1}^{-1}, c_i) and $(a_{i-1}^{-1}c_i, a_i)$ are in D , for $i = 1, \dots, k-1$, and $(a_{k-1}, c_k) \in D$

then the interleaving $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$(c_1a_1, a_1^{-1}c_2a_2, \ldots, a_{k-2}^{-1}c_{k-1}a_{k-1}, a_{k-1}c_k).$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d} = \mathbf{c} * \mathbf{a}$, for some word \mathbf{a} .

$$\mathbf{c} = (c_1, \dots, c_k)$$
 and $\mathbf{a} = (a_1, \dots, a_{k-1})$ words.
If $(c_1, a_1) \in D$, (a_{i-1}^{-1}, c_i) and $(a_{i-1}^{-1}c_i, a_i)$ are in D , for $i = 1, \dots, k-1$, and $(a_{k-1}, c_k) \in D$

then the *interleaving* $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$(c_1a_1, a_1^{-1}c_2a_2, \ldots, a_{k-2}^{-1}c_{k-1}a_{k-1}, a_{k-1}c_k).$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d} = \mathbf{c} * \mathbf{a}$, for some word \mathbf{a} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{c} = (c_1, \dots, c_k)$$
 and $\mathbf{a} = (a_1, \dots, a_{k-1})$ words.
If $(c_1, a_1) \in D$, (a_{i-1}^{-1}, c_i) and $(a_{i-1}^{-1}c_i, a_i)$ are in D , for $i = 1, \dots, k-1$, and $(a_{k-1}, c_k) \in D$

then the *interleaving* $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$(c_1a_1, a_1^{-1}c_2a_2, \ldots, a_{k-2}^{-1}c_{k-1}a_{k-1}, a_{k-1}c_k).$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d} = \mathbf{c} * \mathbf{a}$, for some word \mathbf{a} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathbf{c} = (c_1, \dots, c_k)$$
 and $\mathbf{a} = (a_1, \dots, a_{k-1})$ words.
If $(c_1, a_1) \in D$, (a_{i-1}^{-1}, c_i) and $(a_{i-1}^{-1}c_i, a_i)$ are in D , for $i = 1, \dots, k-1$, and $(a_{k-1}, c_k) \in D$

then the *interleaving* $\mathbf{c} * \mathbf{a}$ of \mathbf{c} and \mathbf{a} is

$$(c_1a_1, a_1^{-1}c_2a_2, \ldots, a_{k-2}^{-1}c_{k-1}a_{k-1}, a_{k-1}c_k).$$

Define $\mathbf{c} \approx \mathbf{d}$ if and only if $\mathbf{d} = \mathbf{c} * \mathbf{a}$, for some word \mathbf{a} .

The Universal Group

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The *universal group* U(P) of P is the set of equivalence classes of reduced words:

the group operation being concatenation of words followed by reduction to a reduced word.

The Universal Group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The *universal group* U(P) of P is the set of equivalence classes of reduced words:

the group operation being concatenation of words followed by reduction to a reduced word.

The Universal Group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The *universal group* U(P) of P is the set of equivalence classes of reduced words:

the group operation being concatenation of words followed by reduction to a reduced word.

Characterisation of equivalence

Lemma

Let P be a pregroup and let (c_1, \ldots, c_m) and (d_1, \ldots, d_n) be words. Then $(c_1, \ldots, c_m) \approx (d_1, \ldots, d_n)$ if and only if m = n and

$$(d_{r-1}^{-1}\cdots d_1^{-1}c_1\cdots c_{r-1},c_r)\in D \ and \ (d_r^{-1},d_{r-1}^{-1}\cdots d_1^{-1}c_1\cdots c_r)\in D,$$

$$r = 1, \ldots m$$
, and $d_m^{-1} \cdots d_1^{-1} c_1 \cdots c_m = 1$.

Corollary

If Q is a subpregroup of a pregroup P then U(Q) is a subgroup of U(P).

Characterisation of equivalence

Lemma

Let P be a pregroup and let (c_1, \ldots, c_m) and (d_1, \ldots, d_n) be words. Then $(c_1, \ldots, c_m) \approx (d_1, \ldots, d_n)$ if and only if m = n and

$$(d_{r-1}^{-1}\cdots d_1^{-1}c_1\cdots c_{r-1},c_r)\in D \ and \ (d_r^{-1},d_{r-1}^{-1}\cdots d_1^{-1}c_1\cdots c_r)\in D,$$

$$r = 1, \dots m$$
, and $d_m^{-1} \cdots d_1^{-1} c_1 \cdots c_m = 1$.

Corollary

If Q is a subpregroup of a pregroup P then U(Q) is a subgroup of U(P).
The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1;
- unary function ⁻¹;
- ternary relation *M*.

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1;
- unary function ⁻¹;
- ternary relation *M*.

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1;
- unary function ⁻¹;
- ternary relation *M*.

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1;
- unary function ⁻¹;
- ternary relation *M*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The language of pregroups $\mathcal{L}_{\mathcal{P}}$:

- constant 1;
- unary function ⁻¹;
- ternary relation *M*.

Theorem

Corollary

Let Γ be a connected, directed graph and let (\mathcal{G}, Γ) and (\mathcal{G}', Γ) be graphs of groups. Suppose the following conditions hold.

- 1 $\mathcal{G}(e) = \mathcal{G}'(e)$, for all edges $e \in ET$.
- ${old 2} \,\, {\mathcal G}(v) \equiv_{\exists} {\mathcal G}'(v), ext{ for all } v \in VT,$

(and some further restrictions on embeddings of edge groups hold).

Then $\pi_1(\mathcal{G}, T) \equiv_{\exists} \pi_1(\mathcal{G}', T)$.

Corollary

Let Γ be a connected, directed graph and let (\mathcal{G}, Γ) and (\mathcal{G}', Γ) be graphs of groups. Suppose the following conditions hold.

1
$$\mathcal{G}(e) = \mathcal{G}'(e)$$
, for all edges $e \in ET$.

2
$$\mathcal{G}(v) \equiv_{\exists} \mathcal{G}'(v)$$
, for all $v \in VT$,

(and some further restrictions on embeddings of edge groups hold).

Then $\pi_1(\mathcal{G}, T) \equiv_{\exists} \pi_1(\mathcal{G}', T).$

Corollary

Let Γ be a connected, directed graph and let (\mathcal{G}, Γ) and (\mathcal{G}', Γ) be graphs of groups. Suppose the following conditions hold.

$${f 0} \,\, {\mathcal G}(e) = {\mathcal G}'(e),$$
 for all edges $e \in {\mathsf E}{\mathsf T}$.

2
$$\mathcal{G}(v) \equiv_{\exists} \mathcal{G}'(v)$$
, for all $v \in VT$,

 (and some further restrictions on embeddings of edge groups hold).

Then $\pi_1(\mathcal{G}, T) \equiv_{\exists} \pi_1(\mathcal{G}', T).$

Corollary

Let Γ be a connected, directed graph and let (\mathcal{G}, Γ) and (\mathcal{G}', Γ) be graphs of groups. Suppose the following conditions hold.

$${f 0} \,\, {\mathcal G}(e) = {\mathcal G}'(e),$$
 for all edges $e \in {\mathsf E}{\mathsf T}$.

2
$$\mathcal{G}(v) \equiv_{\exists} \mathcal{G}'(v)$$
, for all $v \in VT$,

 (and some further restrictions on embeddings of edge groups hold).

Then $\pi_1(\mathcal{G}, T) \equiv_\exists \pi_1(\mathcal{G}', T)$.

Application to Partially Commutative Groups

T_i a tree:

There are three distinct universal theories.

- If T_1 has one vertex and T_2 has 2 vertices then $\mathbb{Z} = G(T_1) \equiv_{\exists} G(T_2) = \mathbb{Z}^2.$
- **2** If T_1 and T_2 have diameter 2 then $G(T_i) = \mathbb{F}_{n_i} \times \mathbb{Z}$ and $G(T_1) \equiv_{\exists} G(T_2)$.

Application to Partially Commutative Groups

T_i a tree:

There are three distinct universal theories.

- If T_1 has one vertex and T_2 has 2 vertices then $\mathbb{Z} = G(T_1) \equiv_{\exists} G(T_2) = \mathbb{Z}^2.$
- 2) If T_1 and T_2 have diameter 2 then $G(T_i) = \mathbb{F}_{n_i} \times \mathbb{Z}$ and $G(T_1) \equiv_{\exists} G(T_2)$.

Application to Partially Commutative Groups

 T_i a tree:

There are three distinct universal theories.

1 If T_1 has one vertex and T_2 has 2 vertices then $\mathbb{Z} = G(T_1) \equiv_{\exists} G(T_2) = \mathbb{Z}^2.$

2) If T_1 and T_2 have diameter 2 then $G(T_i) = \mathbb{F}_{n_i} \times \mathbb{Z}$ and $G(T_1) \equiv_{\exists} G(T_2)$.

Application to Partially Commutative Groups

 T_i a tree:

There are three distinct universal theories.

- If T_1 has one vertex and T_2 has 2 vertices then $\mathbb{Z} = G(T_1) \equiv_{\exists} G(T_2) = \mathbb{Z}^2.$
- **2** If T_1 and T_2 have diameter 2 then $G(T_i) = \mathbb{F}_{n_i} \times \mathbb{Z}$ and $G(T_1) \equiv_{\exists} G(T_2)$.

Application to Partially Commutative Groups

 T_i a tree:

There are three distinct universal theories.

- 1 If T_1 has one vertex and T_2 has 2 vertices then $\mathbb{Z} = G(T_1) \equiv_{\exists} G(T_2) = \mathbb{Z}^2.$
- **2** If T_1 and T_2 have diameter 2 then $G(T_i) = \mathbb{F}_{n_i} \times \mathbb{Z}$ and $G(T_1) \equiv_{\exists} G(T_2)$.