Optimality of the Bartlett-Priestley Window A Tribute to Professor Maurice Priestley

Jingsong Yuan

School of Mathematics, University of Manchester

The Bartlett-Priestley Window

What it is for

- Professor Priestley made many contributions to Time Series.
- One contribution that bears his name is the Bartlett-Priestley window.
- This is used to smooth the peridogram to make it a consistent estimator of the spectrum.
- I was fascinated by spectral analysis because
- Peridicities would show up in the periodogram, which is essentially the squared magnitude of the DFT of the signal.
- The DFT values of a stationary signal are largely uncorrelated, making frequency domain analysis easier than time domain.
- Higher order cumulant properties can be derived making it possible to prove asymptotic normality.
- One day I shall get my head round the DWT.

The Bartlett-Priestley Window

Definition

- The Bartlett-Priestley window is defined as

$$
\begin{aligned}
W_{N}(\theta) & =M K_{B P}(M \theta),|\theta| \leq \pi \\
& = \begin{cases}\frac{3 M}{4 \pi}\left(1-\frac{M^{2} \theta^{2}}{\pi^{2}}\right), & |\theta| \leq \frac{\pi}{M}, \\
0, & \text { o.w. }\end{cases}
\end{aligned}
$$

for time series $(\mathrm{d}=1)$, where M is a 'bandwidth' parameter.

- In d-dimensions,

$$
\begin{gathered}
W_{N}(\theta)=M_{1} \cdots M_{d} K_{B P}\left(M_{1} \theta_{1}, \ldots, M_{d} \theta_{d}\right) \\
K_{B P}(\theta)= \begin{cases}\frac{d(d+2) \Gamma(d / 2)}{4 \Gamma(1 / 2)^{d} \pi^{d}}\left(1-\frac{\|\theta\|^{2}}{\pi^{2}}\right), & \|\theta\| \leq \pi \\
0, & \text { o.w. }\end{cases}
\end{gathered}
$$

The Bartlett-Priestley Window

Properties of $K_{B P}(\theta)$

- Non-negative valued
- Integrates to one
- Peak at $\theta=0$
- Support on $(-\pi, \pi]^{d}$

- Quadratic \Rightarrow optimality

The Bartlett-Priestley Window

How it works

$$
\hat{f}(\omega)=\int_{(-\pi, \pi]^{d}} I_{N}(\theta) W_{N}(\omega-\theta) \mathrm{d} \omega, \omega \in(-\pi, \pi]^{d},
$$

Weighted average of periodogram values $I_{N}(\theta)$ near ω.

The Bartlett-Priestley Window

Optimality

- Mean square error (minimised over M):

$$
\begin{gathered}
\min _{M} \mathrm{E}\left[(\hat{f}(\omega)-f(\omega))^{2}\right] \approx\left(1+\frac{d}{4}\right)(2 \pi)^{\frac{4 d}{d+4}} d^{-\frac{d}{d+4}} \\
\left\{(1+\eta(2 \omega))^{2} f(\omega)^{4} \prod_{i=1}^{d} f_{i i}^{(2)}(\omega)\right]^{\frac{2}{d+4}} \\
\left\{\int_{R^{d}} K(\theta)^{2} \mathrm{~d} \theta\left[\int_{R^{d}}\|\theta\|^{2} K(\theta) \mathrm{d} \theta\right]^{\frac{d}{2}}\right\}^{\frac{4}{d+4}} \\
C(K) \quad \text { Smaller is better }
\end{gathered}
$$

- $K_{B P}(\theta)$ has smallest $C(K)$ among all $K(\theta)$ that is non-negative and integrates to one.

The Bartlett-Priestley Window

Proof of optimality

For any $K(\theta) \geq 0, \int_{R^{d}} K(\theta) \mathrm{d} \theta=1$, choose $\delta>0$ so that

$$
\int_{R^{d}}\|\theta\|^{2} K_{\delta}(\theta) \mathrm{d} \theta=\int_{R^{d}}\|\theta\|^{2} K_{B P}(\theta) \mathrm{d} \theta \quad \text { (Same bias) }
$$

where $K_{\delta}(\theta)=\delta^{d} K\left(\delta \theta_{1}, \ldots, \delta \theta_{d}\right)$. Then $\int_{R^{d}} K_{\delta}(\theta) \mathrm{d} \theta=1$

$$
\begin{gathered}
\Rightarrow \int_{R^{d}}\left(1-\frac{\|\theta\|^{2}}{\pi^{2}}\right) K_{B P}(\theta) \mathrm{d} \theta=\int_{R^{d}}\left(1-\frac{\|\theta\|^{2}}{\pi^{2}}\right) K_{\delta}(\theta) \mathrm{d} \theta \\
\Rightarrow \int K_{B P}(\theta)^{2} \mathrm{~d} \theta \leq \int K_{B P}(\theta) K_{\delta}(\theta) \mathrm{d} \theta \leq \sqrt{\int K_{B P}(\theta)^{2} \mathrm{~d} \theta \int K_{\delta}(\theta)^{2} \mathrm{~d} \theta} \\
\Rightarrow \int_{R^{d}} K_{B P}(\theta)^{2} \mathrm{~d} \theta \leq \int_{R^{d}} K_{\delta}(\theta)^{2} \mathrm{~d} \theta \Rightarrow C\left(K_{B P}\right) \leq \underline{C\left(K_{\delta}\right)=C(K) .} \\
\text { (Smaller variance) } \\
\text { (Smaller MSE) }
\end{gathered}
$$

Scale Invariance of C(K)

Further details

- $C(K)$ is MSE miminised over M which is a vector of scale parameters. You can expect that $C\left(K_{\delta}\right)=C(K)$ for any $\delta>0$.
- "More specifically" (as Professor Priestley would write),

$$
\begin{gathered}
\int_{R^{d}} K_{\delta}(\theta) \mathrm{d} \theta=\int_{R^{d}} \delta^{d} K\left(\delta \theta_{1}, \ldots, \delta \theta_{d}\right) \mathrm{d} \theta=\int_{R^{d}} K(\theta) \mathrm{d} \theta=1, \\
\int_{R^{d}}\|\theta\|^{2} K_{\delta}(\theta) \mathrm{d} \theta=\int_{R^{d}}\|\theta\|^{2} \delta^{d} K\left(\delta \theta_{1}, \ldots, \delta \theta_{d}\right) \mathrm{d} \theta=\frac{1}{\delta^{2}} \int_{R^{d}}\|\theta\|^{2} K(\theta) \mathrm{d} \theta, \\
\int_{R^{d}} K_{\delta}(\theta)^{2} \mathrm{~d} \theta=\int_{R^{d}} \delta^{2 d} K\left(\delta \theta_{1}, \ldots, \delta \theta_{d}\right)^{2} \mathrm{~d} \theta=\delta^{d} \int_{R^{d}} K(\theta)^{2} \mathrm{~d} \theta, \\
C\left(K_{\delta}\right)=\delta^{d} \int_{R^{d}} K(\theta)^{2} \mathrm{~d} \theta\left[\frac{1}{\delta^{2}} \int_{R^{d}}\|\theta\|^{2} K(\theta) \mathrm{d} \theta\right]^{\frac{d}{2}}=C(K) .
\end{gathered}
$$

