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Time Series

Time series are everywhere.

We want to

model them,

estimate parameters,

check model fit, and try other models∗.

forecast future values.

We need models!

∗ Or change the data, or the sampling mechanism: another story.
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Example Time Series: Data Source

MIDAS: Met Office Integrated Data Archive System

Originates from the UK Meteorological Office

Distributed through the NERC British Atmospheric Data Centre

Acknowledgement and thanks is due.

Nonstationary Time Series. c©U. Bristol 3 / 32



Example Time Series: Data Source

MIDAS: Met Office Integrated Data Archive System

Originates from the UK Meteorological Office

Distributed through the NERC British Atmospheric Data Centre

Acknowledgement and thanks is due.

Nonstationary Time Series. c©U. Bristol 3 / 32



Example Time Series: Data Source

MIDAS: Met Office Integrated Data Archive System

Originates from the UK Meteorological Office

Distributed through the NERC British Atmospheric Data Centre

Acknowledgement and thanks is due.

Nonstationary Time Series. c©U. Bristol 3 / 32



Example Time Series: Data Source

MIDAS: Met Office Integrated Data Archive System

Originates from the UK Meteorological Office

Distributed through the NERC British Atmospheric Data Centre

Acknowledgement and thanks is due.

Nonstationary Time Series. c©U. Bristol 3 / 32



Hourly Wind Speeds at Cardinham, Bodmin, Cornwall
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First Differences of Wind Speed
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Time Series Models

“The classical methods of time series analysis . . . are all
based on two crucial assumptions, namely that:

(a) all series are stationary (at least to order 2), or can
be reduced to stationarity . . .

(b) all models are linear, . . . ”

Priestley (1981), page 816.
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Nonstationary Series

“However, stationarity and linearity are
. . . approximations to the real situation.”

and

“. . . first establish some method of characterizing
. . . non-stationary processes, . . . we describe
. . . non-stationary processes based on the theory of
evolutionary spectra. This approach was developed by
Priestley (1965b, 1966, 1967)”

Priestley (1981), page 816.
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Oscillatory Function (Priestley, 1981, Def. 11.2.1)

“The function of t, φt(ω) will be said to be an
oscillatory function if, for some (necessarily unique) θ(ω),
it may be written in the form

φt(ω) = At(ω)e iθ(ω)t ,

where At(ω) is of the form

At(ω) =

∫ ∞
−∞

e itudKω(u),

with |dKω(u)| having an absolute maximum at u = 0.”
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Oscillatory Process (Priestley, 1981, Def. 11.2.2)

“If there exists a family of oscillatory functions {φt(ω)}
in terms of which the process {X (t)} has a
representation of the form

X (t) =

∫ ∞
−∞

φt(ω)dZ (ω),

where Z (ω) is an orthogonal process with
E[|dZ (ω)|2] = dµ(ω), then {X (t)} will be termed an
oscillatory process.”
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Evolutionary Power Spectra (Priestley, 1981, Def. 11.2.3)

“We define the evolutionary power spectrum at time t
dHt(ω) by

dHt(ω) = |At(ω)|2dµ(ω).′′

When X (t) is stationary and θ(ω) = ω then dHt(ω) reduces to the
regular spectrum, h(ω).

Ht(ω) is the integrated time-frequency spectrum.

Assuming smoothness the evolutionary spectral density function is

ht(ω) = H ′t(ω).
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Stationarity Tests (Priestley & Subba Rao, 1969, JRSS-B)

1 Use Priestley’s (1965) ‘double-window’ estimator: ĥt(ω).

2 Define Y (t, ω) = log ĥt(ω).

3 Then, approximately, E{Y (t, ω)} = log ht(ω),

4 And, crucially, var{Y (t, ω)} = σ2.

In other words

Y (t, ω) = log ht(ω) + ε(t, ω),

which we can discretize over a set of times t1, . . . , tI and
frequencies ω1, . . . , ωJ to get the nice linear model:

H : Yij = µ+ αi + βj + γij + εij .

in an obvious way.

Approximately εij
iid∼ N(0, σ2) if ti , ωj spaced out enough.
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2 Define Y (t, ω) = log ĥt(ω).
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Test Procedure and Modern Implementation

Test stationarity by inferring whether αi = 0 and γij = 0, ∀i , j .

Implementation: stationarity() in fractal R package.

Uses improved multitaper estimate: reduces bias.

fractal posted in 2007. By Bill Constantine & Donald Percival of
the Applied Physics Laboratory, U of Washington, USA.

Thirty-eight years after the Priestley and Subba Rao paper!

Way ahead of their time!

p-value for Cardinham data using stationarity() is 9× 10−10.
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Parzen and Priestley’s Vision

“Parzen (1959) has pointed out that if there exists a
representation X (t) =

∫
φt(ω)dZ (ω), then there is a

multitude of different representations of the process, each
representation based on a different family of functions.”

“The situation is in some ways similar to the selection of
a basis for a vector space.”

“However, if the process is non-stationary this choice
[complex exponential family] of family of functions is no
longer valid.”

Priestley (1981) p. 822.
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Priestley’s Oscillatory Functions

From p. 824 Priestley settles on θ(ω) = ω and

φt(ω) = At(ω)e iωt .

This captures uniformly modulated processes At(ω) = C (t).

Nonstationary Time Series. c©U. Bristol 15 / 32



Priestley’s Oscillatory Functions

From p. 824 Priestley settles on θ(ω) = ω and

φt(ω) = At(ω)e iωt .

This captures uniformly modulated processes At(ω) = C (t).

Nonstationary Time Series. c©U. Bristol 15 / 32



Semi-Stationary Processes

Consider linear filter with frequency response function Γ(ω).

Stationary processes have useful property that h(Y )(ω1) is
unaffected by ω 6= ω1, i.e. h(Y )(ω1) = |Γ(ω1)|2h(X )(ω1), . . .

Priestley mimics stationary case and approx. useful property.

He achieves this by At(ω) slowly evolving fn. of t =⇒
semi-stationary processes.

Today, related to locally stationary processes; also has the
advantage of permitting estimation.
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Heisenberg-Gabor uncertainty principle

“more accurately we estimate ht(ω) as a function of time
the less accurately we can determine it as a function of
frequency, ”

Priestley, 1981, p. 835 (Daniells, 1965 and Tjøstheim, 1976).

To estimate time-varying behaviour, we will necessarily have to
sacrifice some frequency resolution.

In some situations ‘local Fourier’ highly inappropriate
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Other Possibilities

Single Bases:

Fourier

(of course).
T/2 frequencies, T time steps

Wavelets, O(N).
logT frequency bands, T time steps

Walsh series

Libraries or Dictionaries of Bases (richer signal analysis)

Local Cosine or Sine bases

Wavelet packet library

“Adapted waveform analysis” of Coifman, fast O(N logN)
transforms.
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Bell Function for Local Cosine Bases

37

Figure 7.4    A bell used for a local cosine  basis
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Local Cosine Basis

“Let {ak} be a sequence of real numbers and {εk} of
positive numbers such that a±k → ±∞ and

ak + εk < ak+1 − εk+1;

let bk(x) be the (εk , εk+1) bell over [ak , ak+1]; then
{uk,j} where

uk,j(x) = {2/(ak+1 − ak)}1/2 bk(x) cos

{
(2j + 1)π(x − ak)

2(ak+1 − ak)

}
,

k ∈ Z, j ∈ N is an orthonormal basis of L2(R).”

Walter and Shen (2001) Theorem 7.3
(Originally Coifman and Meyer (1991)).
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38

Figure 7.5 Three elements in the local cosine basis
with bell of Figure 7.4
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Figure 7.6    Two additional elements of the local
cosine basis showing the bell
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Different Families . . .

Back to Priestley:

“there is a multitude of different representations of the
process, each representation based on a different family
of functions.”

So, there are many things we might try.

Not all of them are oscillatory functions, or we don’t know

E.g. wavelets, Locally Stationary Wavelet Processes:

Xt =
∞∑
j=1

∑
k∈Z

wj ,kψj ,k−tξj ,k ,

wj ,k = amplitude, ψ = oscillation, ξ = randomness.
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A Wavelet Based Test for Stationarity (Nason 2013)

Use raw wavelet periodogram, Ij ,k = d2
j ,k

where dj ,k =
∑

t Xtψj ,k−t

Time-scale analogue of regular periodogram.

Define βj(z) = EIj ,k , where z = k/T

Under stationarity H0 function βj(z) is constant.

In mind locally stationary wavelet process alternative, but not
necessary
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A Wavelet Based Test for Stationarity, 2

Use Neumann and von Sachs (2000) to test constancy of βj(z)

Uses Haar wavelet coefficients of Ij ,k as fn. of k , which are v̂`,m

Test H0 : v`,m = 0 for all `,m, asymptotic Gaussian theory

Use multiple test control, Bonferroni, FDR

R package locits contains the software
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Wavelet Test of Stationarity on Cardinham 1st Diffs

MC Type:  FDR .  7  rejected.
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Cardinham Localized Autocovariance
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Localized Autocovariance for Cardinham: 4 days 0400
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Localized Autocovariance for Cardinham: 16 days 1600
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Summary

Nonstationary time series models

Oscillatory & Semi-Stationary processes

Multitude of representations, which one?

Wavelets, Computational Harmonic Analysis

Essential for picking up alternatives.

Priestley: major contributions to statistics and time series.
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