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DCS and Gaussian ( bottom panel) local level models fitted to Canadian
lmanufacturing.
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Introduction to dynamic conditional score (DCS) models

A guiding principle is signal extraction. When combined with basic ideas
of maximum likelihood estimation, the signal extraction approach leads to
models which, in contrast to many in the literature, are relatively simple in
their form and yield analytic expressions for their principal features.
For estimating location, DCS models are closely related to the unobserved
components (UC) models described in Harvey (1989). Such models can be
handled using state space methods and they are easily accessible using the
STAMP package of Koopman et al (2008).
For estimating scale, the models are close to stochastic volatility (SV)
models, where the variance is treated as an unobserved component.
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Unobserved component models

A simple Gaussian signal plus noise model is

yt = µt + εt , εt ∼ NID
(
0, σ2ε

)
, t = 1, ...,T

µt+1 = φµt + ηt , ηt ∼ NID(0, σ2η),
where the irregular and level disturbances, εt and ηt , are mutually
independent. The AR parameter is φ, while the signal-noise ratio,
q = σ2η/σ2ε , plays the key role in determining how observations should be
weighted for prediction and signal extraction.
The reduced form (RF) is an ARMA(1,1) process

yt = φyt−1 + ξt − θξt−1, ξt ∼ NID
(
0, σ2

)
,

but with restrictions on θ. For example, when φ = 1, 0 ≤ θ ≤ 1. The
forecasts from the UC model and RF are the same.
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Unobserved component models

The UC model is effectively in state space form (SSF) and, as such, it may
be handled by the Kalman filter (KF). The parameters φ and q can be
estimated by ML, with the likelihood function constructed from the
one-step ahead prediction errors.
The KF can be expressed as a single equation. Writing this equation
together with an equation for the one-step ahead prediction error, vt , gives
the innovations form (IF) of the KF:

yt = µt |t−1 + vt
µt+1|t = φµt |t−1 + ktvt

The Kalman gain, kt , depends on φ and q.
In the steady-state, kt is constant. Setting it equal to κ and re-arranging
gives the ARMA(1,1) model with ξt = vt and φ− κ = θ.
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Outliers

Suppose noise is from a heavy tailed distribution, such as Student’s t.
Outliers.
The RF is still an ARMA(1,1), but allowing the ξ ′ts to have a heavy-tailed
distribution does not deal with the problem as a large observation becomes
incorporated into the level and takes time to work through the system.
An ARMA models with a heavy-tailed distribution is designed to handle
innovations outliers, as opposed to additive outliers. See the robustness
literature.
But a model-based approach is not only simpler than the usual robust
methods, but is also more amenable to diagnostic checking and
generalization.
See Lange et al (JASA, 1989) for robustification with the t-distribution.
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Unobserved component models for non-Gaussian noise

Simulation methods, such as MCMC, provide the basis for a direct attack
on models that are nonlinear and/or non-Gaussian. The aim is to extend
the Kalman filtering and smoothing algorithms that have proved so
effective in handling linear Gaussian models. Considerable progress has
been made in recent years; see Durbin and Koopman (2012).
But simulation-based estimation can be time-consuming and subject to a
degree of uncertainty.
Also the statistical properties of the estimators are not easy to establish.
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Observation driven model based on the score

The DCS approach begins by writing down the distribution of the t − th
observation, conditional on past observations. Time-varying parameters
are then updated by a suitably defined filter. Such a model is observation
driven, as opposed to a UC model which is parameter driven. In a linear
Gaussian UC model, the KF is driven by the one step-ahead prediction
error, vt . The DCS filter replaces vt in the KF equation by a variable, ut ,
that is proportional to the score of the conditional distribution.
The innovations form becomes

yt = µt |t−1 + vt , t = 1, ...,T

µt+1|t = φµt |t−1 + κut

where κ is an unknown parameter.
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Dynamic location model

yt = ω+ µt |t−1 + vt = ω+ µt |t−1 + exp(λ)εt ,

µt+1|t = φµt |t−1 + κut ,

where εt is serially independent, standard t-variate and the conditional
score is

ut =

(
1+

(yt − µt |t−1)
2

νe2λ

)−1
vt ,

where vt = yt − µt |t−1 is the prediction error and ϕ = exp(λ) is the
(time-invariant) scale.
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Figure: Impact of ut for tν (with a scale of one) for ν = 3 (thick), ν = 10 (thin)
and ν = ∞ (dashed).
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Basic properties

ut = (1− bt )(yt − µt |t−1), (1)

where

bt =
(yt − µt |t−1)

2/ν exp(2λ)

1+ (yt − µt |t−1)
2/ν exp(2λ)

, 0 ≤ bt ≤ 1, 0 < ν < ∞, (2)

is distributed as beta(1/2, ν/2). The u′ts are IID(0, σ2u) and
symmetrically distributed.
The fact that (2) has a beta distribution follows from the property of the
t-distribution
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Exponential DCS Volatility Models

yt = εt exp(λt pt−1/2), t = 1, ....,T ,

where the serially independent, zero mean variable εt has a tν−distribution
with degrees of freedom, ν > 0, and the dynamic equation for the log of
scale is

λt pt−1 = δ+ φλt−1pt−2 + κut−1.

The conditional score is

ut =
(ν+ 1)y2t

ν exp(λt |t−1) + y2t
− 1, −1 ≤ ut ≤ ν, ν > 0

NB The variance is equal to the square of the scale, that is
(ν− 2)σ2t |t−1/ν for ν > 2.
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Figure: Impact of ut for tν with ν = 3 (thick), ν = 6 (medium dashed) ν = 10
(thin) and ν = ∞ (dashed).

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge Based on joint papers with and Alessandra Luati (Bologna) and Michele Caivano (Bank of Italy))Robust Time Series Models
May 2013 http://www.econ.cam.ac.uk/dae/repec/cam/pdf/cwpe1255.pdf 14

/ 82



Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge Based on joint papers with and Alessandra Luati (Bologna) and Michele Caivano (Bank of Italy))Robust Time Series Models
May 2013 http://www.econ.cam.ac.uk/dae/repec/cam/pdf/cwpe1255.pdf 15

/ 82

Beta-t-EGARCH

The variable ut may be expressed as

ut = (ν+ 1)bt − 1,

where

bt =
y2t /ν exp(λt pt−1)

1+ y2t /ν exp(λt pt−1)
, 0 ≤ bt ≤ 1, 0 < ν < ∞,

is distributed as Beta(1/2, ν/2), a Beta distribution. Thus the u′ts are
IID.
Since E (bt ) = 1/(ν+ 1) and Var(bt ) = 2ν/{(ν+ 3)(ν+ 1)2}, ut has
zero mean and variance 2ν/(ν+ 3).
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Beta-t-EGARCH

1) Moments exist and ACF of |yt |c , c ≥ 0, can be derived.
2) Closed form expressions for moments of multi-step forecasts of volatility
can be derived and full distribution easily simulated.
3) Asymptotic distribution of ML estimators with analytic expressions for
standard errors.
4) Can handle time-varying trends (eg splines) and seasonals (eg time of
day or day of week).
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Location: basic properties

The filter may be generalized to:

µt+1|t = φ1µt |t−1 + ...+ φpµt−p+1|t−p + κ0ut + κ1ut−1 + ...+ κrut−r .

Such a filter is denoted as QARMA(p, r). The full model will be called
DCS − t −QARMA(p, r).

It corresponds to an unobserved component signal plus noise model in
which the signal is ARMA(p, r).
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Basic properties

In the Gaussian case ut = vt . If q is defined as max(p, r + 1), we may
write

yt = φ1yt−1 + ...+ φpyt−p + vt − (φ1 − κ0)vt−1 − ...− (φq − κq)vt−q ,

which is an ARMA(p, q) with MA coeffi cients θi = φi − κi−1, i = 1, .., q.

The invertibility conditions apply to θi = φi − κi−1, i = 1, .., q rather than
to κi , i = 0, ...q.
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Maximum likelihood estimation

The log-likelihood function for the DCS-t model is

ln L(ψ, ν) = T ln Γ ((ν+ 1) /2)− T
2
lnπ − T ln Γ (ν/2)

−T
2
ln ν− T ln ϕ− (ν+ 1)

2

T

∑
t=1
ln

(
1+

(yt − µt |t−1)
2

νϕ2

)
.

Maximization of the log-likelihood function with respect to the unknown
dynamic parameters in the vector ψ and the scale and shape parameters,
λ and ν, can be carried out by numerical optimization.
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Maximum likelihood estimation: information matrix

Let yt | Yt−1 have a tν-distribution with µt |t−1 generated by the first-order
model. Then, assuming that |φ| < 1 and b < 1,

I

 ψ
λ
ν

 =


ν+1
ν+3 exp(−2λ)D(ψ) 0 0

0 2ν
ν+3

1
(ν+3)(ν+1)

0 1
(ν+3)(ν+1) h(ν)/2

 ,
where h(ν) is a function of ν (involving trigamma functions) and

D

 κ
φ
ω

 =
1

1− b


σ2u

aκσ2u
1−aφ 0

aκσ2u
1−aφ

κ2σ2u (1+aφ)
(1−φ2)(1−aφ)

0

0 0 (1−φ)2(1+a)
1−a
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Maximum likelihood estimation: information matrix

a = φ− κ
ν

ν+ 3
,

b = φ2 − 2φκ
ν

ν+ 3
+ κ2

ν
(
ν3 + 10ν2 + 35ν+ 38

)
(ν+ 1) (ν+ 3) (ν+ 5) (ν+ 7)

,

Figure shows a plot of b against κ for φ = 0.9 and ν = 6. The admissible
range is slightly bigger than in the Gaussian case where it is
−0.1 < κ < 1.9.
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Figure: Plot of b against κ for φ = 0.9 and ν = 6
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Maximum likelihood estimation: Gaussian model

For a Gaussian model, b < 1 provided that φ− 1 < κ < φ+ 1.
The reduced form is the ARMA(1, 1) process

yt = φyt−1 + vt − θvt−1.

The condition for strict invertibility in the ARMA(1,1) model is |θ| < 1
and since θ = φ− κ, invertibility ensures that b < 1. The condition θ 6= φ
is needed for identifiability and this condition is equivalent to κ 6= 0.
When φ is known,

Var(κ̃) = 1− b = 1− (φ− κ)2,

which is consistent with the standard MA(1) result, Var(θ̃) = 1− θ2.
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Application to US GDP

A Gaussian AR(1) plus noise model with a constant, was fitted to the
growth rate of US Real GDP, defined as the first difference of the
logarithm, using the STAMP 8 package. The data were quarterly, from
1947(2) to 2012(1), and the parameter estimates were as follows:

φ̃ = 0.501, σ̃2η = 7.62× 10−5, σ̃2ε = 2.30× 10−5, ω̃ = 0.0078.

There was little indication of residual serial correlation, but the
Bowman-Shenton statistic is 30.04, which is clearly significant as the
distribution under the null hypothesis of Gaussianity is χ22. The
non-normality clearly comes from excess kurtosis, which is 1.9, rather than
from skewness.
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Application to US GDP

DCS-location-t model. The estimated degrees of freedom of 6.3 means
that the DCS filter is less responsive to more extreme observations, such
as the fall of 2009(1).

Parameter κ φ λ ω ν

Estimate 0.520 0.497 -4.878 0.0079 6.303
Num SE 0.098 0.102 0.073 0.0009 2.310
ASE 0.090 0.140 0.057 0.0009 1.807

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge Based on joint papers with and Alessandra Luati (Bologna) and Michele Caivano (Bank of Italy))Robust Time Series Models
May 2013 http://www.econ.cam.ac.uk/dae/repec/cam/pdf/cwpe1255.pdf 26

/ 82



Robust estimation and tail behaviour

The M-estimator, which features prominently in the robustness literature,
has a Gaussian response until a certain point, b, whereupon it is constant;
see Maronna et al (2006, p 25-31). This is known as Winsorizing as
opposed to trimming where observations greater than b in absolute value
are set to zero. In both cases setting b to a suitable value requires a
(robust) estimate of scale to be pre-computed.
On the other hand, the t-score is like a redescending estimator - goes to
zero as |y | → ∞. eg Tukey biweight. Gradual form of trimming.

Is there a parametric distribution that gives some form of Winsorizing?
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Figure: Score functions for t3 (thin line) and t6 (thick line) distributions, together
with the linear score for the normal and Tukey’s biweight function.
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Robust estimation and tail behaviour

The Gaussian distribution has kurtosis of three and a distribution is said to
exhibit excess kurtosis if its kurtosis is greater than three. Although many
researchers take excess kurtosis as defining heavy tails, it is not, in itself,
an ideal measure, particularly for asymmetric distributions.
A distribution is said to be heavy-tailed if

lim
y→∞

exp(y/β)F (y) = ∞ for all β > 0, (3)

where F (y) = Pr(Y > y) = 1− F (y) is the survival function.
When y has an exponential distribution, F (y) = exp(−y/α), so when
β = α, exp(y/α)F (y) = 1 for all y . Thus the exponential distribution is
not heavy-tailed.
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Robust estimation and tail behaviour

A distribution is said to be fat-tailed if, for a fixed positive value of η,

F (y) = cL(y)y−η, η > 0, (4)

where c is a non-negative constant and L(y) is slowly varying, that is
limy→∞(L(ky)/L(y)) = 1.
The parameter η is the tail index. The implied PDF is a power law PDF

f (y) ∼ cL(y)ηy−η−1, η > 0, (5)

The m-th moment exists if m < η. The Pareto distribution is a simple
case in which F (y) = y−η for y > 1.
The complement to the Pareto distribution is the power function
distribution- F (y) = y η, 0 < y < 1, η > 0. More generally,
F (y) = cL(y)y η. Hence

f (y) ∼ cL(y)ηy η−1 as y → 0, 0 < y < 1, η > 0.
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Robust estimation and tail behaviour

The above criteria are related to the behavior of the conditional score and
whether or not it discounts large observations. This, in turn, connects to
robustness. More specifically, consider a power law PDF with y divided by
a scale parameter, ϕ, so that f (y) ∼ cL(y)ϕ−1η(y/ϕ)−η−1.
Then

∂ ln f /∂ϕ ∼ η/ϕ as y → ∞

and so the score is bounded.
With the exponential link function, ϕ = exp(λ),

∂ ln f /∂λ ∼ η as y → ∞.

Similarly as y → 0, ∂ ln f /∂λ ∼ η.
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Robust estimation and tail behaviour

The logarithm of a variable with a fat-tailed distribution has exponential
tails.
Let x denote a variable with a fat-tailed distribution in which the scale is
written as ϕ = exp(µ) and let y = ln x . Then for large y

f (y) ∼ cL(ey )ηe−η(y−µ), η > 0, as y → ∞,

whereas as y → −∞, f (y) ∼ cL(ey )ηeη(y−µ), η > 0.
Thus y is not heavy-tailed but it may exhibit excess kurtosis.
The score with respect to location, µ, is the same as the original score
with respect to the logarithm of scale and so tends to η as y → ∞.
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EGB2 ( work in progress with Michele Caivano)

The exponential generalized beta distribution of the second kind (EGB2) is
obtained by taking the logarithm of a variable with a GB2 distribution.
The PDF of a GB2 is

f (x) =
ν(x/α)νξ−1

αB(ξ, ς)
[
(x/α)ν + 1

]ξ+ς
, α, ν, ξ, ς > 0,

where α is the scale parameter, ν, ξ and ς are shape parameters and
B(ξ, ς) is the beta function; see Kleiber and Kotz (2003, ch6). The GB2
distribution contains many important distributions as special cases,
including the Burr (ξ = 1) and log-logistic (ξ = 1, ς = 1). GB2
distributions are fat tailed for finite ξ and ς with upper and lower tail
indices of η = ςν and η = ξν respectively. The absolute value of a tf
variate is GB2(ϕ, 2, 1/2, f /2) with tail index is η = η = f .
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EGB2

Andres and Harvey (2012) study DCS models for time-varying scale.
The properties which EGB2 inherits from GB2 have important implications
for the score function and hence for robustness to additive outliers.
The connection between the score for a t-distribution and redescending
M-estimators is well-known. The fact that the EGB2 distribution gives a
gentle form of Winsorizing is less well-known.
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EGB2

If x is distributed as GB2(α, ν, ξ, ς) and y = ln x , the PDF of the EGB2
variate y is

f (y ; µ, ν, ξ, ς) =
ν exp{ξ(y − µ)ν}

B(ξ, ς)(1+ exp{(y − µ)ν})ξ+ς
. (6)

What was the logarithm of scale in GB2 now becomes location in EGB,
that is ln α becomes µ. Furthermore ν is now a scale parameter, but ξ and
ς are still shape parameters and they determine skewness and kurtosis. All
moments exist.
Although ν is a scale parameter, it is the inverse of what would be
considered a more conventional measure of scale. Thus scale is better
defined as 1/ν or as the standard deviation

σ =
√

ψ′(ξ) + ψ′(ς)/ν = h(ξ, ς)/ν = h/ν. (7)

An exponential link function for the standard deviation yields a parameter
λ = ln σ = − ln ν+ ln h.
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EGB2

When ξ = ς, the distribution is symmetric; for ξ = ς = 1 it is a logistic
distribution and when ξ = ς→ ∞ it tends to a normal distribution.

Proposition
When ξ = ς = 0 in the EGB2, the distribution is double exponential or
Laplace.

A plot of the (symmetric) EGB2, GED and Student’s t with the same
excess kurtosis shows them to be very similar. It is diffi cult to see the
heavier tails of the t distribution from the graph, and the only discernible
difference among the three distributions is in the peak, which is higher and
more pointed for the GED. The EGB2 in turn is more peaked than the t.
As the excess kurtosis increases, the differences between the peaks become
more marked.
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Figure: PDF at the mean for GED, EGB2 and t-distributions with the same
kurtosis.
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EGB2

The score function for the GB2 distribution with respect to ln α is
bounded, reflecting the fact that the distribution has a long tail (fat tail)
and α is a scale parameter. The score function with respect to location in
the EGB2 distribution is of exactly the same form and so inherits the
boundedness property. Specifically,

∂ ln ft
∂µt pt−1

= ν(ξ + ς)bt (ξ, ς)− νξ, t = 1, ...,T ,

where

bt (ξ, ς) =
e(yt−µt pt−1)ν

e(yt−µt pt−1)ν + 1
.

Because 0 ≤ bt (ξ, ς) ≤ 1, it follows that as y → ∞, the score approaches
an upper bound of νς, whereas y → −∞ gives a lower bound of νξ.
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EGB2

It will prove more convenient to replace ν by h/σ and to define ut as

ut = σ2
∂ ln ft

∂µt pt−1
= σh[(ξ + ς)bt (ξ, ς)− ξ]. (8)

We note that the upper and lower bounds are σ
√
2 and −σ

√
2

respectively when ς = ξ = 0. On the other hand, there is no upper (lower)
bound for ς(or ξ)→ ∞ because hς → ∞ ( as does hξ). As ς = ξ → ∞,
the distribution becomes normal and so for large ς and ξ, ut ' yt − µt pt−1.
Andres and Harvey (2012) study time-varying scale in a GB2 DCS model
parameterized with an exponential link function. Many of the results given
there and in Harvey (2013) therefore apply to the EGB2 model with
time-varying location.
The variable bt (ξ, ς) is IID with a beta(ξ, ς) distribution at the true
parameter values.
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Figure: Score functions for EGB2 (thick line), GED (medium line) and t (thick
dash), all with excess kurtosis of 2. Thin line shows normal score.
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EGB2

Figure shows the score functions for standardized (σ = 1) EGB2, GED and
t distributions, all with excess kurtosis of two. The shape parameters for
the three distributions are ξ = 0.5, υ = 1.148 and ν = 7. Given the
apparent similarity of the PDFs, the difference in the behaviour of the
score functions is striking. The score for the t distribution is redescending,
reflecting the fact that it has fat tails. There is no upper bound with GED,
except when it becomes a Laplace distribution and the score is ±

√
2 for

y 6= 0.
Neither the EGB2 nor the GED distribution has heavy tails. However, the
EGB2 distribution has exponential tails, whereas the GED distribution is
super-exponential for υ > 1. Hence the EGB2 score is bounded and what
we get is a gentle form of Winsorizing.
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Higher-order models and the state space form

The observation in the state space form is related to an m× 1 state
vector, αt , through a measurement equation,

yt= z′αt+εt , t = 1, ...,T ,

where z is an m× 1 vector and εt is a serially uncorrelated disturbance
with E (εt ) = 0 and Var (εt ) = σ2ε . The transition equation is

αt+1= Tαt + ηt , t = 1, ...,T .

The Kalman filter can be written as a single set of recursions going
directly from αt |t−1 to αt+1|t , that is

αt+1|t = Tαt |t−1 + ktvt , t = 1, ...,T ,

where vt = yt − z′tαt |t−1 is the innovation and ft = z′Pt |t−1z+ σ2ε is its
variance. The gain vector, kt , is

kt = (1/ft )TPt |t−1z, t = 1, ...,T . (9)
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Higher-order models and the state space form

Re-arranging the KF equations gives the innovations form

yt = z′αt |t−1 + vt , t = 1, ...,T , (10)

αt+1|t = Tαt |t−1+ktvt .

A general location DCS model may be set up in the same way as the
innovations form of a Gaussian state space model. The model
corresponding to the steady-state of (10) is

yt = ω+ z′αt |t−1 + vt , t = 1, ...,T , (11)

αt+1|t = δ+Tαt |t−1 + κut .
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Higher-order models: asymptotic theory

The quantities a and b become

A(ν) = T− {ν/(ν+ 3)}κź,
and

B(ν) = T⊗T+ ν

ν+ 3
(κź⊗T+T⊗ κź)

+
ν
(
ν3 + 10ν2 + 35ν+ 38

)
(ν+ 1) (ν+ 3) (ν+ 5) (ν+ 7)

κź⊗κź

The asymptotic theory requires that the roots of the m2 ×m2 matrix
B(ν) have modulus less than one.
For a Gaussian model this will be the case if the roots of A have modulus
less than one because B = A⊗A.
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Trend and seasonality

Stochastic trend and seasonal components may be introduced into UC
models for location. These models, called structural time series models,
are implemented in the STAMP package of Koopman et al (2009).
The Gaussian random walk plus noise or local level model is

yt = µt + εt , εt ∼ NID(0, σ2ε ),
µt = µt−1 + ηt , ηt ∼ NID(0, σ2η),

where E (εtηs ) = 0 for all t and s. The signal noise ratio is q = σ2η/σ2ε .
The KF is an EWMA

µt+1|t = (1− κ)µt |t−1 + κyt
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Local level

For the DCS-t filter

yt = µt |t−1 + vt ,

µt+1|t = µt |t−1 + κut .

and the initial value, µ1|0,is treated as an unknown parameter that needs
to estimated along with κ and ν.
Since ut = (1− bt )(yt − µt |t−1), re-arranging the dynamic equation gives

µt+1|t = (1− κ(1− bt ))µt |t−1 + κ(1− bt )yt

A suffi cient condition for the weights on current and past observations to
be non-negative is that κ(1− bt ) < 1 and, because 0 ≤ bt ≤ 1, this is
guaranteed by 0 < κ ≤ 1.
The restriction that κ ≤ 1 is much stricter than is either necessary or
desirable. Indeed the argument based on matching autocorrelations
suggests an admissible range of 0 ≤ κ ≤ (ν+ 1)/(ν− 2).
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Local level

As regards asymptotic properties,

Var(κ̃) =

(
2κ

ν

ν+ 3
− κ2

ν
(
ν3 + 10ν2 + 35ν+ 38

)
(ν+ 1) (ν+ 3) (ν+ 5) (ν+ 7)

)(
ν+ 3

ν

)2
.

In contrast to the case when |φ| < 1, it is necessary that κ > 0. For finite
degrees of freedom, the upper bound will be greater than the value of 2 for
a Gaussian model.
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Local level

Fitting a local level DCS model (initialized with µ2|1 = y1) to seasonally
adjusted monthly data on U.S. Average Weekly Hours of Production and
Nonsupervisory Employees: Manufacturing (AWHMAN) from February
1992 to May 2010 (220 observations) gave

κ̃ = 1.246 λ̃ = −3.625 ν̃ = 6.35

with numerical (asymptotic) standard errors

SE (κ̃) = 0.161(0.090) SE (λ̃) = 0.120(0.062) SE (ν̃) = 1.630(1.991)

A drift term was initially included but it was statistically insignificant. The
value of b is 0.151. Although κ̃ is greater than one, the resulting filter is
perfectly consistent with the properties of the series. Figure shows (part
of) the series together with the contemporaneous filter, which for the
random walk is µt |t = µt+1|t . Unusually large prediction errors result in a
small value of κ(1− bt ) and most of weight in the filter is assigned to
µt |t−1.
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Figure: DCS and Gaussian ( bottom panel) local level models fitted to US
average weekly hours of production.
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Local linear trend

The DCS local linear trend filter is

yt = µt |t−1 + vt , t = 1, ...,T ,

µt+1|t = µt |t−1 + βt |t−1 + κ1ut
βt+1|t = βt |t−1 + κ2ut .

The initialization β3|2 = y2 − y1 and µ3|2 = y2 can be used, but, as in the
local level model, initializing in this way is vulnerable to outliers at the
beginning. Estimating the fixed starting values, µ1|0 and β1|0, is a better
option.
An IRW trend in the UC local linear trend model implies the contraint
κ2 = κ21/(2− κ1), 0 < κ1 < 1, which may be found from Harvey (1989,
p. 177). The restriction can be imposed on the DCS-t model by treating
κ1 = κ as the unknown parameter, but without unity imposed as an upper
bound.
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Stochastic seasonal

A fixed seasonal pattern may be modeled as γt = ∑s
j=1 γjzjt , where s is

the number of seasons and the dummy variable zjt is one in season j and
zero otherwise. In order not to confound trend with seasonality, the
coeffi cients, γj , j = 1, ..., s, are constrained to sum to zero.
The seasonal pattern may be allowed to change over time by letting the
coeffi cients evolve as random walks. If γjt denotes the effect of season j at
time t and γt = (γ1t , ...,γst )

′ , then

γt = γt−1 +ωt , t = 1, ...,T ,

where ωt is a normally distributed, zero-mean vector of disturbances.
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Stochastic seasonal

Although all s seasonal components are continually evolving, only one
affects the observations at any particular point in time, that is γt = γjt
when season j is prevailing at time t. The requirement that ∑s

j=1 γjt = 0,
is enforced by the restriction that the disturbances sum to zero at each
point in time.
This restriction is implemented by the correlation structure in

Var (ωt ) = σ2ω
(
I− s−1ii′

)
where ωt = (ω1t , ...,ωst )

′ and i is a vector of ones, coupled with initial
conditions requiring that the seasonals sum to zero at t = 0.
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Stochastic seasonal

In the state space form, the transition matrix is just the identity matrix,
but the z vector must change over time to accommodate the current
season. Apart from replacing z by zt , the form of the KF remains
unchanged. Adapting the innovations form to the DCS observation driven
framework gives

yt = z′tαt |t−1 + vt , αt+1|t = αt |t−1 + κtut ,

where zt picks out the current season, γt |t−1, that is γt |t−1 = zt«αt |t−1.
The only question is how to parameterize κt .
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Stochastic seasonal

The seasonal dummies in the UC model are constrained to sum to zero
and the same is true of their filtered estimates. Thus i′κt = 0 in the
Kalman filter and this property should carry across to the DCS filter.
If κjt , j = 1, .., s, denotes the j − th element of κt , then in season j we set
κjt = κs , where κs is a non-negative unknown parameter, while

κit = −κs/(s − 1) i 6= j .

The amounts by which the seasonal effects change therefore sum to zero.
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Basic structural model

The seasonal recursions can be combined with the trend filtering equations
to give a structure similar in form to that of the Kalman filter for the
stochastic trend plus seasonal plus noise UC model, sometimes known as
the ‘basic structural model’. Thus

yt = µt |t−1 + γt |t−1 + vt

The initial conditions at time t = 0 are estimated by treating them as
parameters; there are s − 1 seasonal parameters because the remaining
initial seasonal state is minus the sum of the others.
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Figure: Logarithm of National Rail Travel in the UK (number of kilometres)
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Application to rail travel

An unobserved components model was fitted to the rail series using the
STAMP 8 package of Koopman et al (2009). Trend, seasonal and irregular
components were included but the model was augmented with intervention
variables to take out the effects of observations that are known to be
unrepresentative.
The intervention dummies were:
(i) the train drivers strikes in 1982(1,3);
(ii) the Hatfield crash and its aftermath, 2000(4) and 2001(1); and
(iii) the signallers strike in 1994(3).
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Application to rail travel

Fitting a DCS model with trend and seasonal avoids the need to deal
explicitly with the outliers. The ML estimates for the parameters in a
model with a random walk plus drift trend are

κ̃ = 1.421(0.161) κ̃s = 0.539 (0.070) λ̃ = −3.787 (0.053)
ν̃ = 2.564 (0.319) β̃ = 0.003 (0.001)

with initial values µ̃ = 2.066(0.009), γ̃1 = −0.094(0.007),
γ̃2 = −0.010(0.006) and γ̃3 = 0.086(0.006).
The figures in parentheses are numerical standard errors. The last seasonal
is γ̃4 = 0.018; it has no SE as it was constructed from the others.
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Figure: Trends in National Rail Travel from UC and DCS models
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Figure: Seasonals in National Rail Travel from UC and DCS models
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Figure: Residuals and scores from DCS-t model
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Rail travel

Figure shows the residuals, that is the one-step ahead prediction errors,
and score for the DCS model. The outliers, which were removed by
dummies in the UC model, show up clearly in the residuals.
In the score series the outliers are downweighted and the autocorrelations
for the score are slightly bigger than those of the residuals presumably
because they are not weakened by aberrant values. The Box-Ljung Q(12)
statistic is 19.78 for the score and 12.40 for the residuals.
If it can be assumed that only the number of fitted dynamic parameters
affects the distribution of the Box-Ljung statistic, its distribution under the
null hypothesis of correct model specification is χ210, which had a 5%
critical value of 18.3. Thus the scores reject the null hypothesis, albeit
only marginally, while the residuals do not. Having said that, the score
autocorrelations do not exhibit any clear pattern and it is not clear how
the dynamic specification might be improved.
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Figure: Residual correlograms for irregular and score residuals from DCS-t model
fitted to National Rail Travel (lines are ± 1/

√
T )
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Explanatory variables

The location parameter may depend on a set of observable explanatory
variables, denoted by the k × 1 vector wt , as well as on its own past values
and the score. The model can be set up as

yt = µ†
t pt−1 +w

′
tγ+εt exp(λ), t = 1, ...,T ,

where µ†
t pt−1 could be a stationary process or a stochastic trend.

The model may be augmented by a seasonal component.
If it is possible to make a sensible guess of initial values of the explanatory
variable coeffi cients, the degrees of freedom parameter, ν, and the dynamic
parameters, φ and κ for a stationary first-order model or β and κ for a
random walk with drift, can be estimated by fitting a univariate model to
the residuals, yt −w′t γ̂, t = 1, ..,T . These values are then used to start
off numerical optimization with respect to all the parameters in the model.
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Asymptotic theory

Consider a model with a stationary first-order component. Assume that
the explanatory variables are weakly stationary with mean µw and second
moment Λw and are strictly exogenous in the sense that they are
independent of the εt́s and therefore of the u′ts. Assuming that b < 1 and
κ 6= 0, the limiting distribution of√
T (κ̃ − κ, φ̃− φ, γ̃′ − γ′, λ̃− λ, ν̃− ν)′ is multivariate normal with mean

vector zero and covariance matrix given by the inverse of

I

 ψ
λ
ν

 =


ν+1
ν+3 exp(−2λ)D(ψ) 0 0

0 2ν
ν+3

1
(ν+3)(ν+1)

0 1
(ν+3)(ν+1) h(ν)/2

 ,
but with ψ replaced by (κ, φ,γ′)′ and D(ψ) replaced by
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Asymptotic theory

D

 κ
φ
γ

 =
1

1− b

 A D 0′

D B 0′

0 0 Cw

 ,
where

Cw = (1+ φ2)Λw − 2φΛw (1) + 2a(1− a)−1(1− φ)2µwµ′w ,

with Λw (1) = E (wtw′t−1) = E (wt−1w
′
t ).
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Asymptotic theory

Corollary. When µ†
t pt−1 is known to be a random walk with drift, β, and

µ†
1p0 is fixed and known,

D

 κ
γ
β

 =
1

1− b

 σ2u 0′ 0′

0 C∆w µ∆w
0 µ′∆w 1

 ,
where µ∆w = E (∆wt ) and C∆w = E (∆wt∆w′t ).
Assume b < 1 and C∆w is positive definite.
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Asymptotic theory

The first differences of the explanatory variables must be weakly stationary
but their levels may be nonstationary. Then the covariance matrix of the
limiting distribution of

√
T γ̃ is

Var(γ̃) =

(
2κν

ν+ 1
− κ2

ν
(
ν3 + 10ν2 + 35ν+ 38

)
(ν+ 1)2 (ν+ 5) (ν+ 7)

)
e2λ(C∆w −µ∆wµ′∆w )

−1

In principle, the above Corollary may be extended to models where
seasonals are included.
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Rail travel

Potential explanatory variables for the rail travel series of Sub-section 6.5
are: (i) Real GDP ( in £ 2003 prices), (ii) Real Fares, obtained by dividing
total revenue by the number of kilometres travelled and the retail price
index (RPI), and (iii) Petrol and Oil index (POI), divided by RPI. The
fares series was smoothed by fitting a univariate UC model.
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Figure: Rail travel in the UK and explanatory variables
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Application to rail travel: unobserved components model

STAMP gave the following estimates for the coeffi cients of the logarithms
of the explanatory variables:
GDP was 0.716 (0.267), fares was -0.416 (0.245) and POI was 0.050
(0.065).
All the estimates are all plausible. The coeffi cient of the petrol index is not
statistically significant at any conventional level, but at least it has the
right sign.
Failure to deal with outliers in a time series regression can lead to serious
distortions and this is illustrated when the intervention variables are not
included -
the fare estimate is plus 0.28 !
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Rail travel: DCS-t without seasonal

When rail travel was seasonally adjusted by removing the seasonal
component obtained from the univariate DCS-t model and LPOI was also
seasonally adjusted, estimating the DCS-t model without a seasonal gave

κ̃ = 1.346(0.151) λ̃ = −3.879 (0.102)
ν̃ = 2.436 (0.534) β̃ = 0.001 (0.002),

where the figures in parentheses are ASEs.
The ASEs calculated for the coeffi cients of LGDP, Lfare (level) and LPOI
(seasonally adjusted) using Var(γ̃) were 0.251, 0.246 and 0.050
respectively.
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Rail travel: DCS-t with seasonal

Fitting a DCS-t model with seasonal gave

κ̃ = 2.212 κ̃s = 0.771 λ̃ = −4.059
ν̃ = 2.070 β̃ = 0.0004

with initial values µ̃ = −6.162, γ̃1 = −0.084, γ̃2 = −0.007 and
γ̃3 = 0.070.
The coeffi cients of the explanatory variables were:

LGDP = 0.734 Lfare = −0.427 LPOI = 0.056
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Application to rail travel

A good deal, but by no means all, of the growth in rail travel from the
mid-nineties is due to the increase in GDP. The continued fall after the
economy had moved out of the recession of the early nineties is partly
explained by the fact that fares increased sharply in 1993 in anticipation of
rail privatisation and continued to increase till 1995.
Nevertheless, as is apparent from the Figure, there remain long-term
movements in rail travel that cannot be accounted for by the exogenous
variables.
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Stochastic location and stochastic scale

The Student t model for time-varying location may be combined with
Beta-t-EGARCH. In other words yt | Yt−1 has a tν distribution with mean
µt |t−1 and scale exp(λt pt−1), that is

yt = µt |t−1 + εt exp(λt pt−1), t = 1, ...,T .

The structure of the information matrix in the static model is such that
the form of the dynamic equations for µt |t−1 and λt |t−1 is unchanged.
The Beta-t-EGARCH score is

ut =
(ν+ 1)(yt − µt |t−1)

2

ν exp(2λt pt−1) + (yt − µt |t−1)
2 − 1

Estimation by ML is straightforward - asymptotics is not.
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Example - seasonally adjusted rate of inflation in the US.

The rate of inflation is often a random walk plus noise. Thus for the
DCS-t model

µt+1|t = µt |t−1 + κ†ut ,

where ut is the level score and the dagger serves to differentiate κ† from
the κ parameter in the dynamic scale equation.
For the Gaussian unobserved components model, ut is the prediction error
and κ† is the Kalman gain.

Fitting such a model using the STAMP package gave an estimate of 0.579
for κ†. The plot of the filtered level, µt+1|t , shows it to be sensitive to
extreme values, while the ACF of the absolute values of the residuals
provides strong evidence of serial correlation in variance.
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Figure: Filtered level from a Gaussian model.
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Estimating a model in which filtered location is a random walk and scale
evolves as a first-order Beta-t-EGARCH process gives the following ML
estimates:
for location, κ̃† = 0.699(0.097),

and for scale, δ̃ = −0.370(0.214), φ̃ = 0.912(0.051) and κ̃ = 0.
118(0.041), with ν̃ = 11.71(4.58).

The filtered DCS estimates respond less to extreme values than those from
the homoscedastic Gaussian model.
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Figure: Filtered DCS level with Beta-t-GARCH.

Andrew Harvey (ach34@cam.ac.uk) (Faculty of Economics, University of Cambridge Based on joint papers with and Alessandra Luati (Bologna) and Michele Caivano (Bank of Italy))Robust Time Series Models
May 2013 http://www.econ.cam.ac.uk/dae/repec/cam/pdf/cwpe1255.pdf 81

/ 82

Conclusions

DCS filter enables a time series model to be handled robustly.
Model-based approach, based on a t-distribution, is relatively simple, both
conceptually and computationally, and is amenable to diagnostic checking
and generalization.
Consider stationary models and then move on to include trend and
seasonal components.
The same techniques could be applied to robustify ARIMA and seasonal
ARIMA models.
Optimal forecasts can be computed recursively, either as in an ARMA
model or by using the SSF, and multi-step conditional distributions can be
easily constructed by simulation.
Explanatory variables.

Other generalizations are possible. eg a skewed-t model may be adopted
using the method used by Harvey and Sucarrat (2012) for a volatility
model.
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