Application to rainfall models

### Inference without likelihoods

#### Richard E. Chandler

#### Department of Statistical Science, University College London (r.chandler@.ucl.ac.uk) Joint work with Joao Jesus

Maurice Priestley commemoration day, 18th December 2013



Application to rainfall models

#### Motivation

#### Motivation

- Likelihood function fundamental to most statistical inference
  - Measures relative fidelity of model to data under different parameter values
- But may be unable or unwilling to formulate likelihood in some settings, e.g.:
  - Dependent non-Gaussian processes: relative scarcity of tractable multivariate distributions
  - Where data do not correspond directly to model structure (e.g. models in continuous time, data aggregated or sampled at discrete time points)
  - Where likelihood would encourage fidelity to features of the data that (simplified) models were not designed to reproduce
  - Where models are non-probabilistic



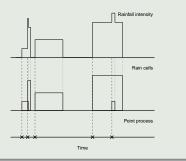
Application to rainfall models

Summary

Example: point process models for rainfall

#### Example: point process models for rainfall

- Hydrologists need models to simulate rainfall time series for use when designing dams, reservoirs, sewage systems etc.
- Popular class of models based on point processes
  - Used in 'weather generator' provided in official UK climate projections (http://ukclimateprojections.defra.gov.uk)
- Simplified representation of rainfall mechanism: superposition of rain cells, each attached to event of a point process
- Each cell has random duration & constant random intensity.
- Rainfall intensity at any time is sum of intensities over all active cells.



Estimating functions

Application to rainfall models

ヘロト 不得 とうほ とうせい

Summary

Example: point process models for rainfall

#### Inference for point process rainfall models

- Model parameters are (e.g.) cell arrival rate, mean cell duration, mean cell intensity etc.
- Rainfall data typically totals over (e.g.) hourly intervals
- Likelihood-based inference infeasible: joint density of data unavailable
- Likelihood-based inference also undesirable because of rectangular temporal profiles of cells:
  - Observed rainfall series rarely contain same value in successive wet intervals, need new cell at each time point to achieve this using model ('fidelity to data')
- Models usually fitted using generalised method of moments: match observed and modelled values of selected properties for which analytical expressions are available

Estimating functions

Application to rainfall models

Summary

#### Estimating functions

#### Beyond likelihood: estimating functions

- Many problem-specific techniques available to overcome difficulties with likelihood-based inference (EM algorithm, Bayesian methods, composite likelihood, ...)
- Focus here on estimating functions (EFs) as unifying theory
- EFs widely known as 'folklore' in statistical community but most literature focused on optimality in specific settings
- Aim here to summarise theory in accessible & generally applicable terms, & look at some applications

#### Reference

Jesus, J. and R.E. Chandler (2011). Estimating functions and the generalized method of moments. *Interface Focus*, **1(6)**, 871-885.



Application to rainfall models

Outline of talk

### Remainder of talk

#### Review of EF theory

- (a) Main definitions & properties
- (b) Example 1: the generalised method of moments
- (c) Example 2: Whittle likelihood
- Application to rainfall models
- Summary



Application to rainfall models

Summary

Review of estimating function theory

## Estimating functions: overview of theory

Definition (estimating function / equation)

Given a model with  $p \times 1$  parameter vector  $\theta$ , and a  $n \times 1$  vector **y** of data values, suppose that  $\theta$  is estimated by solving an equation of the form

$$\mathbf{g}(\mathbf{\theta}; \mathbf{y}) = \mathbf{0} \tag{1}$$

where  $\mathbf{g}(\cdot; \cdot)$  is a vector-valued function containing *p* elements. Such a function  $\mathbf{g}(\cdot; \cdot)$  is an *estimating function* (EF), and an equation of the form (1) is an *estimating equation*.

 Often g(θ; ·) is gradient vector (e.g. of log-likelihood or error sum of squares) — but framework doesn't require this



Estimating functions

Application to rainfall models

Summary

Review of estimating function theory

# Asymptotics: target of estimation

• Extend notation: let  $\mathbf{Y}_n$  be  $n \times 1$  vector of random variables;  $\mathbf{g}_n(\cdot; \cdot)$  be corresponding EF;  $\hat{\mathbf{\theta}}_n$  be root of equation

$$\mathbf{g}_n(\boldsymbol{\theta}; \mathbf{Y}_n) = \mathbf{0} . \tag{2}$$

• Implicit assumption: (2) has at least one root.

#### Definition (target of estimation)

Assume existence of sequence  $(\eta_n)$  of  $p \times p$  matrices, independent of  $\theta$  and such that as  $n \to \infty$ ,  $\eta_n \mathbf{g}_n(\theta; \mathbf{Y}_n)$  converges uniformly in probability to a non-random function,  $\mathbf{g}_{\ell}(\theta)$  say, with the following properties:

• The equation  $\mathbf{g}_{\ell}(\mathbf{\theta}) = \mathbf{0}$  has a unique root at  $\mathbf{\theta} = \mathbf{\theta}_0$ .

(•) is bounded away from zero except in neighbourhood of  $\theta_0$ . Then  $\theta_0$  is *target of estimation* or *object of inference*.



Application to rainfall models

Summary

Review of estimating function theory

## Asymptotics: convergence of the estimator

#### Result

Under conditions given above, as  $n \to \infty$  the EF defines a unique estimator  $\hat{\theta}_n$  that converges in probability to  $\theta_0$ .

Comments on conditions:

- Often easy to establish pointwise convergence of η<sub>n</sub>g<sub>n</sub>(θ; Y<sub>n</sub>) but uniform convergence can be technically challenging
- Some approaches to ensure uniform convergence:
  - Assume parameter space is compact.
  - Impose conditions of smoothness on EFs  $\{\mathbf{g}_n(\mathbf{\theta}; \cdot)\}$ .
  - Write EF as continuous function of finite vector T<sub>n</sub>(Y<sub>n</sub>) of statistics, which itself converges in probability to some limiting value.
- More details: van der Vaart (1998) Asymptotic statistics, Ch. 5.

Estimating functions

Application to rainfall models

Summary

Review of estimating function theory

## Asymptotics: limiting distribution

#### Result

- Assume existence of sequences (γ<sub>n</sub>) and (δ<sub>n</sub>) of invertible p × p matrices that do not depend on θ and are such that:
  - $\lim_{n\to\infty} \operatorname{Var}(\tilde{\mathbf{g}}_n(\theta_0; \mathbf{Y}_n)) = \tilde{\Sigma}$  where  $\tilde{\mathbf{g}}_n(\theta; \mathbf{Y}_n) = \gamma_n \mathbf{g}_n(\theta; \mathbf{Y}_n)$  and  $\tilde{\Sigma}$  is a positive definite matrix.
  - **2** Defining  $\tilde{\mathbf{G}}_n(\theta) = \partial \tilde{\mathbf{g}}_n / \partial \theta$ , within a neighbourhood of  $\theta_0$  the matrix  $\tilde{\mathbf{G}}_n(\theta)\delta_n$  converges uniformly in probability to an invertible matrix  $\mathbf{M}(\theta)$  with elements that are continuous functions of  $\theta$ .
- Then  $\lim_{n\to\infty} \mathsf{E}\left(\hat{\theta}_n\right) = \theta_0 \& \lim_{n\to\infty} \mathsf{Var}\left(\delta_n^{-1}\hat{\theta}_n\right) = \mathsf{M}_0^{-1}\tilde{\Sigma}\left(\mathsf{M}_0^{-1}\right)'$ where  $\mathsf{M}_0 = \mathsf{M}(\theta_0)$ .
- If, in addition, **ğ**<sub>n</sub>(θ; **Y**<sub>n</sub>) has limiting multivariate normal (MVN) distribution then so does δ<sup>-1</sup><sub>n</sub>θ̂<sub>n</sub>.



Estimating functions

Application to rainfall models

Summary

Review of estimating function theory

## Comments on limiting distribution

- Conditions are easy to check & hold in wide variety of settings
- Can often set  $\eta_n = n^{-1} \mathbf{I}_{p \times p}$ ,  $\gamma_n = \delta_n = n^{-1/2} \mathbf{I}_{p \times p}$  but different choices needed for (e.g.) long-memory processes, combinations of stationary and non-stationary elements of  $\mathbf{g}_n(\cdot; \cdot)$  etc.
- Limiting result more usefully restated for operational use:

#### Operational statement of limiting result

Let  $\Sigma_n$  denote covariance matrix of  $\mathbf{g}_n(\theta_0; \mathbf{Y}_n)$ . Then under previous assumptions, and if  $\mathbf{G}_0 = \mathrm{E}\left[\partial \mathbf{g}_n / \partial \theta|_{\theta=\theta_0}\right]$  exists,  $\hat{\theta}_n \sim \mathrm{MVN}\left(\theta_0, \mathbf{G}_0^{-1} \Sigma_n \left[\mathbf{G}_0^{-1}\right]'\right)$  approximately in large samples.



Application to rainfall models

Review of estimating function theory

### Extensions of result

- Generalisation available without requiring existence of expectations or covariance matrices (Sweeting, 1980, Ann. Stat. 8, 1375-1381).
- Extension to processes for which sequence  $(\tilde{\mathbf{G}}_n(\theta)\delta_n)$ converges in distribution to random matrix  $\mathbf{M}_0$ ; then inference about  $\theta_0$  is conditional upon realised value of  $\mathbf{M}_0$  (Sweeting, 1992, *Ann. Stat.*, **20**, 580-589).
  - Needed, e.g., when regressing time series upon random walk covariate



| Introduction                         | Estimating functions | Application to rainfall models | Summary |  |  |  |  |  |  |  |
|--------------------------------------|----------------------|--------------------------------|---------|--|--|--|--|--|--|--|
| Review of estimating function theory |                      |                                |         |  |  |  |  |  |  |  |
| Model cor                            | nparison             |                                |         |  |  |  |  |  |  |  |

- Limiting result forms basis for testing hypotheses of form  $H_0: \Xi \theta = \xi_0$  where  $\Xi$  is  $q \times p$  matrix of rank q.
- Let  $\Gamma_n = \mathbf{G}_0^{-1} \Sigma_n [\mathbf{G}_0^{-1}]'$  be approximate covariance matrix of  $\hat{\boldsymbol{\theta}}$  from operational version of limiting result; then

$$\hat{\xi}_{n} = \Xi \hat{\theta}_{n} \sim \text{MVN} \left( \Xi \theta_{0}, \Xi \Gamma_{n} \Xi' \right)$$
(3)

Suggests quasi-Wald test statistic

$$\left(\hat{\xi}_n - \xi_0\right) \left[\Xi \Gamma_n \Xi'\right]^{-1} \left(\hat{\xi}_n - \xi_0\right)' \tag{4}$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

with approximate  $\chi_q^2$  distribution under  $H_0$ .

 Alternative: quasi-score test based on value of EF itself (easiest when EF is gradient vector so that value under H<sub>0</sub> is defined)

Estimating functions

Application to rainfall models

Summary

Review of estimating function theory

# Model comparison continued

- Final option when EF is gradient vector:  $\mathbf{g}_n(\theta; \mathbf{Y}_n) = \partial Q_n / \partial \theta$  say
- Let  $\tilde{\theta}_n$  be optimiser of  $Q_n$  under restriction  $\Xi \theta = \xi_0$ ; then test can be based on statistic

$$2\left|Q_{n}\left(\tilde{\boldsymbol{\theta}}_{n};\mathbf{Y}_{n}\right)-Q_{n}\left(\hat{\boldsymbol{\theta}}_{n};\mathbf{Y}_{n}\right)\right|$$
(5)

イロト 不得 とうほう イロン

- Null distribution is that of  $Z'A^{-1}Z$  where  $Z \sim MVN(\mathbf{0}, \mathbf{I}_{q \times q})$  and  $\mathbf{A} = \Xi \mathbf{G}_{0}^{-1}\Xi$  can approximate with scaled and shifted  $\chi^{2}$  dbn.
- NB results yield standard χ<sup>2</sup> asymptotics when g(·; ·) is gradient of log-likelihood.
- Some practical and theoretical benefits from adjusting  $Q_n(\cdot; \cdot)$  before calculating (5) see Chandler & Bate, 2007, *Biometrika*, **94**, 167-183 in context of mis-specified log-likelihoods.

| Introduction |
|--------------|
| 00000        |

Application to rainfall models

Summary

Review of estimating function theory

### Practical issues

Recap: limiting result  $\hat{\theta}_n \sim \text{MVN}\left(\theta_0, \mathbf{G}_0^{-1} \Sigma_n \left[\mathbf{G}_0^{-1}\right]'\right)$  approx., where  $\Sigma_n = \text{Var}\left[\mathbf{g}_n(\theta_0; \mathbf{Y}_n)\right]$ &  $\mathbf{G}_0 = \text{E}\left[\left.\partial \mathbf{g}_n / \partial \theta\right|_{\theta = \theta_0}\right].$ 

- Need consistent estimators of Σ<sub>n</sub> & G<sub>0</sub>
  - Can use any estimator for which estimation error is asymptotically negligible compared with quantity being estimated.
- Some options:
  - Plug estimate  $\hat{\theta}_n$  into expressions for  $\mathbf{G}_0$  and  $\sum_n$ , if available.
  - For  $\mathbf{M}_0$ , numerical differentiation of  $\mathbf{g}_n(\cdot; \cdot)$  at  $\hat{\mathbf{\theta}}_n$ .
  - Use empirical estimator for Σ<sub>n</sub> needs replication e.g. by splitting data into (quasi-)independent subsets

Estimating functions

Application to rainfall models

(7)

イロト 不得 トイヨト イヨト ニヨー

The generalised method of moments (GMM)

## Example 1: the generalised method of moments (GMM)

- Consider vector  $\mathbf{T}_n = \mathbf{T}_n(\mathbf{Y}_n)$  of  $k \ge p$  summary statistics with:
  - $\mathsf{E}[\mathbf{T}_n] = \tau(\theta)$
  - $\lim_{n\to\infty} \operatorname{Var} [\gamma_n \mathbf{h}_n(\theta; \mathbf{Y}_n)] = \mathbf{S}$  for some sequence  $(\gamma_n)$  of  $k \times k$  matrices that do not depend on  $\theta$ , where  $\mathbf{h}_n(\theta; \mathbf{Y}_n) = \mathbf{T}_n \tau(\theta)$ .
- Estimate θ by minimising

$$Q_n(\boldsymbol{\theta}; \mathbf{Y}_n) = \left[\tilde{\mathbf{h}}_n(\boldsymbol{\theta}; \mathbf{Y}_n)\right]' \mathbf{W}_n \tilde{\mathbf{h}}_n(\boldsymbol{\theta}; \mathbf{Y}_n) .$$
 (6)

where

- $\tilde{\mathbf{h}}_n(\boldsymbol{\theta}; \mathbf{Y}_n) = \gamma_n \mathbf{h}_n(\boldsymbol{\theta}; \mathbf{Y}_n)$
- $\mathbf{W}_n$  is  $k \times k$  matrix with  $\text{plim}_{n \to \infty} \mathbf{W}_n = \mathbf{W}$  (+ve definite)

Resulting EF is

$$\mathbf{g}_n(\mathbf{\theta};\mathbf{Y}_n) = \tilde{\mathbf{H}}_n'(\mathbf{\theta}) \mathbf{W}_n \tilde{\mathbf{h}}_n(\mathbf{\theta};\mathbf{Y}_n)$$

where  $\tilde{\mathbf{H}}_n(\theta) = \partial \tilde{\mathbf{h}}_n / \partial \theta = -\gamma_n \partial \tau / \partial \theta$ .



- Requirements for EF asymptotics translate into convergence and continuity requirements for T<sub>n</sub> and τ(θ), their properties & derivatives
- Large-sample covariance matrix suggests optimal choice of W is  $W = S^{-1}$ 
  - Recap: **S** is limiting covariance matrix of normalised summary statistics
  - NB however: S must be estimated sampling errors here can affect inference particularly if k<sup>2</sup> ≫ p & elements of S are estimated separately
  - Alternative ('2-step procedure'): use preliminary estimate of θ to obtain improved estimate of S, then re-estimate θ



Application to rainfall models

イロト 不得 とうほう イロト

#### Whittle likelihood

## Example 2: the Whittle likelihood

- Often want to study stationary processes for which likelihood function is analytically / computationally intractable
- 1950s: Whittle formulated frequency-domain approximation to full likelihood for zero-mean Gaussian processes
- Subsequent work extended approach to linear, long-memory, ARCH, locally stationary ... processes
- Alternative justification (REC & TSR, Athens Conference, 1996): treat sample Fourier coefficients as observations and use standard large-sample properties (approx. independent & normal with variance proportional to spectral density):
  - Justifies use of Whittle estimator in non-Gaussian settings
  - Accommodates processes with non-zero mean by incorporating Fourier coefficient at zero frequency

Estimating functions

Application to rainfall models

イロト イポト イヨト イヨト

Summary

Whittle likelihood

## Whittle likelihood from Fourier coefficients

Definition (Whittle log-likelihood for a stationary process)

$$\log L(\theta) = -\sum_{j=0}^{\lfloor n/2 \rfloor} \left( 1 - \frac{1}{2} \delta_{j,n/2} \right) \left[ \frac{l(\omega_j)}{h(\omega_j; \theta)} + \log h(\omega_j; \theta) \right] - \frac{1}{2} \left[ \log h(0; \theta) + \frac{(A_0 - n\mu(\theta))^2}{h(0; \theta)} \right], \text{ where } (8)$$

- $\delta_{\cdot,\cdot}$  is Kronecker delta
- $I(\omega_j)$  is periodogram at frequency  $\omega_j = 2\pi j/n$
- $h(\omega; \theta)$  is theoretical spectral density at frequency  $\omega$
- $A_0 = \sum_{t=1}^{n} Y_t$  is sample Fourier coefficient at zero frequency
- $\mu(\theta)$  is theoretical mean of process

Application to rainfall models

イロト 不得 とうほう イロト

#### Whittle likelihood

## Inference using the Whittle likelihood

- Usual approach to inference / uncertainty of Whittle estimator requires fourth-order spectral density — limits practical application
- EF treatment with empirical covariance matrix estimation circumvents this:
  - First noted for zero-mean processes in Heyde, 1997, *Quasi-Likelihood and its applications*.
- Inclusion of zero-frequency term requires careful treatment (& many results from Priestley, Robinson etc.)
- EF treatment with previous assumptions also requires
   0 < h(ω; θ) < ∞; first & second θ-derivatives of h(ω; θ) finite & continuous; first & second ω-derivatives of h(ω; θ) finite.</li>
  - Finite spectral density rules out long-memory processes for this treatment

Estimating functions

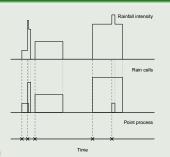
Application to rainfall models

Neyman-Scott model

# Application to rainfall models

#### The Neyman-Scott rectangular pulses model

- 'Storm origins': homogeneous Poisson process, rate  $\lambda$
- Each storm has random number of cells, C ~ Poi(μ<sub>C</sub>)
- Within storm, cell origins displaced from storm origin independently according to Exp(β)
- Cell durations: independent  $Exp(\eta)$ 
  - Cell intensities: independent with mean  $\mu_X$  and variance  $\sigma_X^2$
  - This is model used in official UK climate projections





Application to rainfall models

#### GMM

### GMM for Neyman-Scott model

- Simulation study to assess performance
- Work with  $\theta = (\log \lambda \log \mu_X \log(\sigma_X/\mu_X) \log \mu_C \log \beta \log \eta)'$ (more computationally stable than original parameterisation)
- Generate 1000 simulated datasets
  - Each represents 20 years' worth of hourly data for one calendar month (30 days) — typical of availability in applications
  - Parameters representative of UK winter rainfall
- GMM properties T<sub>n</sub>: mean; variance of 1-, 6- & 24-hour totals; ACF(1) for 1- & 24-hour totals; proportion of dry hours & days
  - Typical of hydrological practice
  - Calculated separately for each month 20 replicates per simulation allows empirical covariance matrix estimation
  - Quenouille estimator used for ACF to ensure  $E(T_n) = \tau$

Estimating functions

Application to rainfall models

#### GMM

# GMM simulation study continued

- Recap: GMM estimator minimises  $[\mathbf{T}_n \tau(\theta)]' \mathbf{W}_n [\mathbf{T}_n \tau(\theta)]$ .
- Different options for **W**<sub>n</sub> compared:
  - W<sub>1</sub>: diagonal, equal weights
  - W<sub>2</sub>: diagonal, increased weight to 1-hour mean, variance & proportion dry (common hydrological practice)
  - **W**<sub>3</sub>: diagonal, inverses of variances of elements of **T**<sub>n</sub>, obtained by simulation from initial fit using inverses of empirical variances.
  - **W**<sub>0</sub>: inverse of covariance matrix of **T**<sub>n</sub>, obtained by simulation from initial fits used for **W**<sub>3</sub>.

#### NB W<sub>3</sub> & W<sub>0</sub> yield two-step estimators

- Performance assessment:
  - Bias & variability of estimators
  - Coverages of quasi-Wald confidence intervals for each parameter
  - Coverages of confidence regions for  $\boldsymbol{\theta}$  based on values of GMM objective function

イロト 不得下 不良下 不良下 一度

GMM

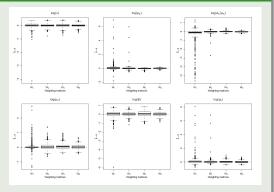
Estimating functions

Application to rainfall models

### GMM simulations: bias & variability

#### Simulated distributions of estimation errors

- All weighting schemes deliver approx. unbiased estimators
- W<sub>1</sub> & W<sub>2</sub> prone to outliers
- Distributions ≈ normal for W<sub>3</sub> & W<sub>0</sub>



- W<sub>0</sub> most efficient as expected
- W<sub>3</sub> close to W<sub>0</sub> (& to first stage in two-step estimator)



GMM

Estimating functions

Application to rainfall models

#### GMM simulations: coverages

| Level |                       | $\text{log}\lambda$ | $\log \mu_X$ | $\log \sigma_X/\mu_X$ | $\log \mu_C$ | $\log\beta$ | logη | θ    |
|-------|-----------------------|---------------------|--------------|-----------------------|--------------|-------------|------|------|
| 95%   | <b>W</b> <sub>1</sub> | 0.94                | 0.97         | 0.99                  | 0.99         | 0.98        | 0.97 | 0.89 |
|       | <b>W</b> <sub>2</sub> | 0.92                | 0.90         | 0.90                  | 0.95         | 0.93        | 0.98 | 0.89 |
|       | <b>W</b> <sub>3</sub> | 0.92                | 0.95         | 0.93                  | 0.96         | 0.94        | 0.96 | 0.92 |
|       | <b>W</b> <sub>0</sub> | 0.94                | 0.94         | 0.92                  | 0.94         | 0.92        | 0.94 | 0.94 |
| 99%   | <b>W</b> <sub>1</sub> | 0.98                | 0.99         | 0.99                  | 0.99         | 1.00        | 0.98 | 0.96 |
|       | <b>W</b> <sub>2</sub> | 0.98                | 0.97         | 0.96                  | 0.99         | 0.97        | 0.99 | 0.96 |
|       | <b>W</b> <sub>3</sub> | 0.98                | 0.98         | 0.98                  | 0.99         | 0.98        | 0.99 | 0.97 |
|       | <b>W</b> <sub>0</sub> | 0.99                | 0.98         | 0.97                  | 0.99         | 0.97        | 0.99 | 0.98 |

- Coverages reasonable for W<sub>3</sub> & W<sub>0</sub>; less accurate for W<sub>1</sub> & W<sub>2</sub>
- Slight undercoverage of all confidence regions for  $\theta$  based on values of objective function



Application to rainfall models

#### Whittle likelihood

# Whittle likelihood for Neyman-Scott model

- Similar simulation experiment carried out
- For this model, derivative matrix  $\mathbf{G}_0 = \partial \mathbf{g}/\partial \theta$  ill-conditioned for Whittle EFs: simplify so that cell intensities  $\sim Exp(1/\mu_X) \& \sigma_X = \mu_X$ .
- Results indicate that estimators are approx. unbiased but asymptotic theory can overestimate sampling variability
  - Possibly due to use of empirical covariance matrix of Whittle EFs
  - But Wald-based confidence intervals have reasonable coverage
- Poor coverage of confidence regions for θ based on values of log-likelihood itself (e.g. 77% instead of 95%)
- Whittle estimates more variable than GMM ones for this model

#### Summary

- Estimating functions provide general framework for studying many inference methods
- Consistency, asymptotic distributions etc. verified using (fairly) easy-to-check conditions
- Empirical / two-step covariance matrix estimation is useful alternative to (e.g.) use of fourth-order properties in spectral estimation
- Optimal GMM estimation preferable to spectral likelihoods in inference for (challenging) stochastic rainfall models

